This homework is due on Friday, October 28, 2022, at 11:59PM. Selfgrades and HW Resubmissions are due on the following Friday, November 4,2022 , at 11:59PM.

1. (OPTIONAL) Mid-Semester Survey

Please fill out this mid-semester survey to let us know how the class has been going so far! This survey is optional and anonymous, but you can submit a screenshot of the final page of the survey to Gradescope to receive 2 global extra credit points! We will be accepting submissions on Gradescope until Sunday, October 30 at 11:59pm.

2. Change of Basis

(a) For any given vector, we have to choose a basis to write this vector in. Typically, we choose the standard basis $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ where \vec{e}_{i} is a vector with a 1 in the i th position and zeros everywhere else. Given a vector $\vec{x}=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right]$, write \vec{x} as a linear combination of standard basis vectors.
(b) We can also represent the same vector \vec{x} in a different basis. Let us write this new basis as $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$. Find a way to write \vec{x} from the previous subpart as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. Simplify your answer as an equation with matrix-vector multiplication, and assume that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent.
(HINT: One representation of \vec{x} is the one you determined in the previous subpart. Another representation of \vec{x} is $\widetilde{\alpha}_{1} \vec{v}_{1}+\widetilde{\alpha}_{2} \vec{v}_{2}+\cdots+\widetilde{\alpha}_{n} \vec{v}_{n}$. We need these two representations to be algebraically equal to indicate that they both represent the same vector. For your convenience, you may define $\overrightarrow{\tilde{\alpha}}=\left[\begin{array}{c}\widetilde{\alpha}_{1} \\ \widetilde{\alpha}_{2} \\ \vdots \\ \widetilde{\alpha}_{n}\end{array}\right]$.)
(c) Suppose that we truncated our basis so that we now only have $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ where $m<n$ linearly independent vectors, but we could still represent \vec{x} as a linear combination of these vectors. How do you modify your method from the previous part? You may not assume that you know $\vec{v}_{m+1}, \ldots, \vec{v}_{n}$.
(HINT: Think about using projections. Specifically, consider projecting onto the column space of a matrix that you define.)
(d) Suppose that all the vectors \vec{v}_{i} from the previous part were orthonormal. Simplify your answer from the previous subpart under this assumption.
(HINT: Let $U=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{m}\end{array}\right] \in \mathbb{R}^{n \times m}$ where $n>m$. If $S=U^{\top} U$, then $S_{i j}=\vec{u}_{i}^{\top} \vec{u}_{j}$.)

3. Cayley-Hamilton and Controllability Matrix

(a) We can define the characteristic polynomial of a matrix $A \in \mathbb{R}^{n \times n}$ as

$$
\begin{equation*}
p_{A}(\lambda)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0} \lambda^{0} \tag{1}
\end{equation*}
$$

where each $c_{i} \in \mathbb{R}$ is a constant. The characteristic polynomial has roots that are the eigenvalues of A. That is, we can equivalently define

$$
\begin{equation*}
p_{A}(\lambda)=\operatorname{det}\{\lambda I-A\} \tag{2}
\end{equation*}
$$

We say that any of the eigenvalues of A "satisfy" the characteristic polynomial in that

$$
\begin{equation*}
p_{A}\left(\lambda_{i}\right)=0 \tag{3}
\end{equation*}
$$

where λ_{i} is the i th eigenvalue of A. Now, let A be a diagonalizable matrix, where we may write $A=V \Lambda V^{-1}$. Prove that A satisfies its own characteristic polynomial. In other words, prove that $p_{A}(A)=0_{n \times n}$, where $0_{n \times n}$ is a $n \times n$ matrix of zeros.
(HINT: It is not correct to simply plug in $\lambda=A$ into $\operatorname{det}\{\lambda I-A\}$.)
(b) Now, consider some vector $\vec{b} \in \mathbb{R}^{n}$. Using the result from the previous part, show that $A^{n} \vec{b}$ is linearly dependent on $A^{n-1} \vec{b}, A^{n-2} \vec{b}, \ldots, A \vec{b}, \vec{b}$.
(c) Instead of setting \vec{b} to be a vector, let it be a matrix $B \in \mathbb{R}^{n \times m}$. Now, show that the columns of $A^{n} B$ are linearly dependent on the columns of $A^{n-1} B, A^{n-2} B, \ldots, A B, B$.
(HINT: If we were to write $B=\left[\begin{array}{llll}\vec{b}_{1} & \vec{b}_{2} & \cdots & \vec{b}_{m}\end{array}\right]$ where each column is n-dimensional, we can write $A^{i} B=\left[\begin{array}{llll}A^{i} \vec{b}_{1} & A^{i} \vec{b}_{2} & \cdots & A^{i} \vec{b}_{m}\end{array}\right]$. Make sure you convince yourself of this.)
(d) Consider a discrete time system of the form

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i] \tag{4}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. The controllability matrix for this discrete time system is given by

$$
\mathcal{C}=\left[\begin{array}{lllll}
A^{n-1} B & A^{n-2} B & \cdots & A B & B \tag{5}
\end{array}\right]
$$

Conclude that the rank of your controllability matrix will not change if, instead, you made your controllability matrix $\left[\begin{array}{lllll}A^{n} B & A^{n-1} B & \cdots & A B & B\end{array}\right]$ (i.e., you prepended $A^{n} B$ to your original controllability matrix).

4. CCF Transformation and Controllability

(a) Consider the following discrete time system

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i] \tag{6}
\end{equation*}
$$

Suppose we define a change of basis operation given by $M \vec{z}[i]=\vec{x}[i] \Longleftrightarrow \vec{z}[i]=M^{-1} \vec{x}[i]$. This yields a new discrete time system of the form

$$
\begin{equation*}
\vec{z}[i+1]=\widetilde{A} \vec{z}[i]+\widetilde{B} \vec{u}[i] \tag{7}
\end{equation*}
$$

for some \widetilde{A} and \widetilde{B} defined in terms of M, A, and B. What is the controllability matrix for the system in eq. (7), in terms of M, A, and B ?
(b) Consider the change of basis given by $\vec{z}[i]=T^{-1} \vec{x}[i]$ where, under this change of basis transformation, we have the following discrete time system

$$
\begin{equation*}
\vec{z}[i+1]=A_{\mathrm{CCF}} \vec{z}[i]+B_{\mathrm{CCF}} \vec{u}[i] \tag{8}
\end{equation*}
$$

Using the result from the previous part, determine an expression for T in terms of \mathcal{C}, the controllability matrix of the original system in eq. (6), and $\mathcal{C}_{\mathrm{CCF}}$, the controllability matrix of the system in eq. (8).
(c) We know that the controllability matrix for a system in CCF will always be full rank. Using this, prove that you can find a transformation matrix T as in the previous part if and only if your original system is controllable. (HINT: To prove this, you can first show that, if such a T exists, then your original system is controllable. Then, you can show that, if your original system is controllable, there will exist such a transformation matrix T.) (HINT: Recall that T must be invertible (equivalently, full rank) in order for it to be a valid transformation matrix. You may use without proof the fact that $\operatorname{rank}(A B)=\min (\operatorname{rank}(A), \operatorname{rank}(B))$.
(d) Consider the following discrete-time dynamics model:

$$
\vec{x}[i+1]=\underbrace{\left[\begin{array}{ll}
1 & 1 \tag{9}\\
0 & 1
\end{array}\right]}_{A} \vec{x}[i]+\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{\vec{b}} \vec{u}[i]
$$

Find the transformation matrix T such that the dynamics model for $\vec{z}[i]=T^{-1} \vec{x}[i]$ is in CCF. You may use a calculator/computer to perform any computations, if you wish.
(HINT: First, find the characteristic polynomial of A. Use this to determine what A_{CCF} and \vec{b}_{CCF} should be, and then use this to determined $\mathcal{C}_{\mathrm{CCF}}$.)

5. QR System ID

(a) Suppose we are given the following discrete time dynamical system:

$$
\begin{equation*}
x[i+1]=a x[i]+b_{1} u_{1}[i]+b_{2} u_{2}[i]+\cdots+b_{n-1} u_{n-1}[i] \tag{10}
\end{equation*}
$$

We would like to estimate $a, b_{1}, b_{2}, \ldots, b_{n-1}$ using system ID. Suppose we have collected data up to $x[m]$, where $m<n$. Set up a linear system of the form $D \vec{p}=\vec{s}$ to solve this system ID problem. Show that D has dimensions $m \times n$.
(b) As we saw in the previous part, we have a wide matrix D. Assuming that D is rank m, we would technically have infinitely many solutions for $a, b_{1}, b_{2}, \ldots, b_{n-1}$. We can find the solution with the smallest norm using QR decomposition.
We can write $D^{\top}=\left[\begin{array}{llll}\vec{d}_{1} & \vec{d}_{2} & \cdots & \vec{d}_{m}\end{array}\right]$ where each $\vec{d}_{i} \in \mathbb{R}^{n}$. We can also define an orthonormal matrix $Q \in \mathbb{R}^{n \times n}$ which can be written as $Q=\left[\begin{array}{llllllll}\vec{q}_{1} & \vec{q}_{2} & \cdots & \vec{q}_{m} & \vec{q}_{m+1} & \vec{q}_{m+2} & \cdots & \vec{q}_{n}\end{array}\right]$, where $\operatorname{Span}\left(\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{m}\right)=\operatorname{Span}\left(\vec{d}_{1}, \vec{d}_{2}, \ldots, \vec{d}_{m}\right)$. In this case, what is $\vec{d}_{j}^{\top} \vec{q}_{i}$ for $j \in\{1, \ldots, m\}$ and $i \in\{m+1, \ldots, n\}$? Explain your answer.
(HINT: If we say that Span $\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right)=\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right)$, then we may say that \vec{v}_{i} can be written as a linear combination of $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ (and equivalently, \vec{u}_{i} can be written as a linear combination of $\left.\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right)$.)
(c) Suppose that D^{\top} can be written as

$$
D^{\top}=\left[\begin{array}{llll}
\vec{q}_{1} & \vec{q}_{2} & \cdots & \vec{q}_{m}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 m} \tag{11}\\
0 & r_{22} & \cdots & r_{2 m} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & r_{m m}
\end{array}\right]
$$

Using this result and the result from the previous part, show that the QR decomposition of D^{\top} can be written as

$$
D^{\top}=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \tag{12}\\
0_{(n-m) \times m}
\end{array}\right]
$$

Using eq. (12), write an expression for $Q_{1}^{\top} \vec{p}$ where $D \vec{p}=\vec{s}$, and show that the value of $Q_{2}^{\top} \vec{p}$ does not matter. Here, $R_{1} \in \mathbb{R}^{m \times m}$ is a square, upper triangular matrix, $\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right] \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, and $0_{(n-m) \times m} \in \mathbb{R}^{(n-m) \times m}$ is a matrix of all zeros. Q_{1} is $n \times m$ and Q_{2} is $n \times(n-m)$. Note that R_{1} is invertible.
(HINT: Equation (12) uses block matrix form. When multiplying block matrices, they obey the same rules as regular matrix-vector multiplication. That is, $\left[\begin{array}{ll}M & N\end{array}\right]\left[\begin{array}{l}A \\ B\end{array}\right]=M A+N B$. When transposing block matrices, we may write $\left[\begin{array}{l}A \\ B\end{array}\right]^{\top}=\left[\begin{array}{ll}A^{\top} & B^{\top}\end{array}\right]$.) (HINT: First, simplify eq. (12) using the previous hint. Then, use the previous problem to find a potential candidate for Q_{2}. Use the previous part again to confirm that this candidate would work by computing $R_{i j}$ using the formula provided in lecture (for $j \in\{1, \ldots, m\}$ and $i \in\{m+1, \ldots, n\})$.)
(d) From the previous part, we determined that the value of $Q_{2}^{\top} \vec{p}$ did not matter. Hence, we can set $Q_{2}^{\top} \vec{p}=\overrightarrow{0}$ for the purposes of minimizing $\|\vec{p}\|$ (the reason why we do this will be covered a little bit later, but take this as a given for now). Solve for \vec{p} using the QR decomposition of D^{\top}, assuming $Q_{2}^{\top} \vec{p}=\overrightarrow{0}$. (HINT: The following identity holds true: $\left[\begin{array}{l}A \vec{x} \\ B \vec{x}\end{array}\right]=\left[\begin{array}{l}A \\ B\end{array}\right] \vec{x}$.) (HINT: Stack the two expressions for $Q_{1}^{\top} \vec{p}$ and $Q_{2}^{\top} \vec{p}$ to obtain an expression for $\left[\begin{array}{l}Q_{1}^{\top} \vec{p} \\ Q_{2}^{\top} \vec{p}\end{array}\right]$. Use the previous hint to determine your final expression for \vec{p}.)

Contributors:

- Anish Muthali.

