This homework is due on Friday, November 4, 2022, at 11:59PM. Self-

grades and HW Resubmissions are due on the following Friday, November 11, 2022, at 11:59PM.

1. Correctness of the Gram-Schmidt Algorithm

Suppose we take a list of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ and run the following Gram-Schmidt algorithm on it to perform orthonormalization. It produces the vectors $\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\}$.

```
1: for i = 1 up to n do
                                                                                                                            ▷ Iterate through the vectors
         \vec{r}_i = \vec{a}_i - \sum_{j < i} \vec{q}_j \left( \vec{q}_j^{\top} \vec{a}_i \right)
                                                                                 \triangleright Find the amount of \vec{a}_i that remains after we project
         if \vec{r}_i = \vec{0} then
                \vec{q}_i = \vec{0}
4:
          else
5:
                \vec{q}_i = \frac{\vec{r}_i}{\|\vec{r}_i\|}
                                                                                                                                    ▷ Normalize the vector.
6:
7:
          end if
8: end for
```

In this problem, we prove the correctness of the Gram-Schmidt algorithm by showing that the following three properties hold on the vectors output by the algorithm.

- 1. If $\vec{q}_i \neq \vec{0}$, then $\vec{q}_i^{\top} \vec{q}_i = ||\vec{q}_i||^2 = 1$ (i.e. the \vec{q}_i have unit norm whenever they are nonzero).
- 2. For all $1 \le \ell \le n$, Span $(\{\vec{a}_1, ..., \vec{a}_\ell\}) = \text{Span}(\{\vec{q}_1, ..., \vec{q}_\ell\})$.
- 3. For all $i \neq j$, $\vec{q}_i^{\top} \vec{q}_i = 0$ (i.e. \vec{q}_i and \vec{q}_i are orthogonal).
- (a) First, we show that the first property holds by construction from the if/then/else statement in the algorithm. It holds when $\vec{q}_i = \vec{0}$, since the first property has no restrictions on \vec{q}_i if it is the zero vector. **Show that** $\|\vec{q}_i\| = 1$ **if** $\vec{q}_i \neq \vec{0}$.
- (b) Next, we show the second property by considering each ℓ from 1 to n, and showing the statement that $\operatorname{Span}(\{\vec{a}_1,\ldots,\vec{a}_\ell\}) = \operatorname{Span}(\{\vec{q}_1,\ldots,\vec{q}_\ell\})$. This statement is true when $\ell=1$ since the algorithm produces \vec{q}_1 as a scaled version of \vec{a}_1 . Now assume that this statement is true for $\ell = k - 1$. Under this assumption, show that the spans are the same for $\ell = k$.

This implies that because $Span(\{\vec{a}_1\}) = Span(\{\vec{q}_1\})$, then so too is $Span(\{\vec{a}_1, \vec{a}_2\}) = Span(\{\vec{q}_1, \vec{q}_2\})$, and so forth, until we get that $Span(\{\vec{a}_1,\ldots,\vec{a}_n\}) = Span(\{\vec{q}_1,\ldots,\vec{q}_n\}).$

(HINT: What you need to show is: if there exists $\vec{\alpha} = \begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \neq \vec{0}_k$ so that $\vec{y} = \sum_{j=1}^k \alpha_j \vec{a}_j$, then there exists $\vec{\beta} = \begin{bmatrix} \beta_1 & \cdots & \beta_k \end{bmatrix} \neq \vec{0}_k$ such that $\vec{y} = \sum_{j=1}^{k-1} \beta_j \vec{q}_j$ (this is the forward direction). And vice *versa from* $\vec{\beta}$ *to* $\vec{\alpha}$ (this is the reverse direction).)

(HINT: To show the forward direction, write \vec{a}_k in terms of \vec{q}_k and earlier \vec{q}_i . Use the condition for $\ell=k-1$ to show the condition for $\ell=k$. Don't forget the case that $\vec{q}_k=\vec{0}$. The reverse direction may be approached similarly.)

(c) Lastly, we establish orthogonality between every pair of vectors in $\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\}$. Consider each ℓ from 1 to n. We want to show the statement that for all $j < \ell$, $\vec{q}_j^\top \vec{q}_\ell = 0$. The statement holds for $\ell = 1$ since there are no j < 1. Assume that this statement holds for ℓ up to and including k-1. That is, we assume that for all $i \le k-1$, $\vec{q}_i^\top \vec{q}_i = 0$ for all j < i.

Under this assumption, **show that for all** $i \le k$, **that** $\vec{q}_j^{\top} \vec{q}_i = 0$ **for all** j < i. This shows that every pair of distinct vectors up to $1, 2, ..., \ell$ are orthogonal for each ℓ from 1 to n.

(HINT: The cases $i \leq k-1$ are already covered by the assumption. So you can focus on i=k. Next, notice that the case $\vec{q}_k = \vec{0}$ is also true, since the inner product of any vector with $\vec{q}_k = \vec{0}$ is $\vec{0}$. So, focus on the case $\vec{q}_k \neq \vec{0}$ and expand what you know about \vec{q}_k .)

EECS 16B Homework 10 2022-10-30 16:10:23-07:00

2. Schur Decomposition Algorithm Application

Use the Schur Decomposition Algorithm to upper triangularize the following matrix:

$$A = \begin{bmatrix} 1 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
 (1)

You may use the fact that an eigenvector of A is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, and that an eigenvector of $\begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The algorithm is shown below for your reference:

Algorithm 1 Real Schur Decomposition

Require: A square matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues.

Ensure: An orthonormal matrix $U \in \mathbb{R}^{n \times n}$ and an upper-triangular matrix $T \in \mathbb{R}^{n \times n}$ such that $A = UTU^{\top}$.

```
1: function REALSCHURDECOMPOSITION(A)
```

```
2: if A is 1 \times 1 then
```

3: return
$$\begin{bmatrix} 1 \end{bmatrix}$$
, A

4: end if

5:
$$(\vec{q}_1, \lambda_1) := \text{FINDEIGENVECTOREIGENVALUE}(A)$$

6:
$$Q := \text{EXTENDBASIS}(\{\vec{q}_1\}, \mathbb{R}^n)$$
 \triangleright Extend $\{\vec{q}_1\}$ to a basis of \mathbb{R}^n using Gram-Schmidt; see Note 13

7: Unpack
$$Q := \begin{bmatrix} \vec{q}_1 & \widetilde{Q} \end{bmatrix}$$

8: Compute and unpack
$$Q^{T}AQ = \begin{bmatrix} \lambda_1 & \vec{\tilde{a}}_{12}^{T} \\ \vec{0}_{n-1} & \widetilde{A}_{22} \end{bmatrix}$$

9:
$$(P, \widetilde{T}) := \text{RealSchurDecomposition}(\widetilde{A}_{22})$$

10:
$$U := \begin{bmatrix} \vec{q}_1 & \widetilde{Q}P \end{bmatrix}$$

11:
$$T := \begin{bmatrix} \lambda_1 & \vec{\tilde{a}}_{12}^\top P \\ \vec{0}_{n-1} & \widetilde{T} \end{bmatrix}$$

12: **return**
$$(U, T)$$

13: end function

You are welcome to use a calculator/computer for any matrix multiplication steps.

3. Using Upper-Triangularization to Solve Differential Equations

You know that for any square matrix A with real eigenvalues, there exists a real matrix U with orthonormal columns and a real upper triangular matrix R so that $A = URU^{\top}$. In particular, to set notation explicitly:

$$U = \left[\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_n \right] \tag{2}$$

$$R = \begin{bmatrix} \vec{r}_1^\top \\ \vec{r}_2^\top \\ \vdots \\ \vec{r}_n^\top \end{bmatrix}$$
 (3)

where the rows of the upper-triangular *R* look like

$$\vec{r}_1^{\top} = \begin{bmatrix} \lambda_1 & r_{1,2} & r_{1,3} & \dots & r_{1,n} \end{bmatrix} \tag{4}$$

$$\vec{r}_2^{\top} = \begin{bmatrix} 0, \lambda_2, r_{2,3}, r_{2,4}, \dots & r_{2,n} \end{bmatrix}$$
 (5)

$$\vec{r}_i^{\top} = \begin{bmatrix} \underbrace{0, \dots, 0}_{i-1 \text{ times}}, \lambda_i, r_{i,i+1}, r_{i,i+2}, \dots, r_{i,n} \end{bmatrix}$$
 (6)

$$\vec{r}_n^{\top} = \left[\underbrace{0, \dots, 0}_{n-1 \text{ times}}, \lambda_n \right] \tag{7}$$

where the λ_i are the eigenvalues of A.

Suppose our goal is to solve the n-dimensional system of differential equations written out in vector/matrix form as:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x}(t) = A\vec{x}(t) + \vec{u}(t),\tag{8}$$

$$\vec{x}(0) = \vec{x}_0,\tag{9}$$

where \vec{x}_0 is a specified initial condition and $\vec{u}(t)$ is a given vector of functions of time. (Note: u(t) is not the same as the columns of U above)

Assume that the U and R have already been computed and are accessible to you using the notation above.

Assume that you have access to a function $ScalarSolve(\lambda, y_0, \check{u})$ that takes a real number λ , a real number y_0 , and a real-valued function of time \check{u} as inputs and returns a real-valued function of time that is the solution to the scalar differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = \lambda y(t) + \check{u}(t) \tag{10}$$

with initial condition $y(0) = y_0$.

Also assume that you can do regular arithmetic using real-valued functions and it will do the right thing. So if u is a real-valued function of time, and g is also a real-valued function of time, then 5u + 6g will be a real valued function of time that evaluates to 5u(t) + 6g(t) at time t.

Use U, R to construct a procedure for solving this differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x}(t) = A\vec{x}(t) + \vec{u}(t),\tag{11}$$

$$\vec{x}(0) = \vec{x}_0,\tag{12}$$

for $\vec{x}(t)$ by filling in the following template in the spots marked \clubsuit , \diamondsuit , \heartsuit , \spadesuit .

NOTE: It will be useful to upper triangularize *A* by change of basis to get a differential equation in terms of *R* instead of *A*.

(HINT: The process here should be similar to diagonalization with some modifications. Start from the last row of the system and work your way up to understand the algorithm.)

1: $\vec{\tilde{x}}_0 = U^\top \vec{x}_0$

▷ Change the initial condition to be in V-coordinates

2: $\vec{\widetilde{u}} = U^{\top} \vec{u}$

- \triangleright Change the external input functions to be in *V*-coordinates
- 3: **for** i = n down to 1 **do**

▷ Iterate up from the bottom row

4: $\check{u}_i = \clubsuit + \sum_{j=i+1}^n \spadesuit$

▶ Make the effective input for this level

5: $\widetilde{x}_i = \text{ScalarSolve}(\diamondsuit, \widetilde{x}_{0,i}, \widecheck{u}_i)$

▷ Solve this level's scalar differential equation

6: end for

7:
$$\vec{x}(t) = \heartsuit \begin{bmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \\ \vdots \\ \widetilde{x}_n \end{bmatrix} (t)$$

▷ Change back into original coordinates

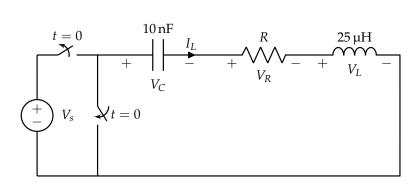
- (a) Give the expression for \heartsuit on line 7 of the algorithm above. (i.e., how do you get from $\vec{\tilde{x}}(t)$ to $\vec{x}(t)$?)
- (b) **Give the expression for** \diamondsuit **on line 5 of the algorithm above.** (i.e., what are the λ arguments to ScalarSolve, equation (2), for the i^{th} iteration of the for-loop?)

(HINT: Convert the differential equation to be in terms of R instead of A. It may be helpful to start with i = n and develop a general form for the ith row.)

- (c) Give the expression for \$\infty\$ on line 4 of the algorithm above.
- (d) Give the expression for \spadesuit on line 4 of the algorithm above.

4. RLC Responses: Critically Damped Case

It is recommended that you complete the previous problem before starting this one. Consider the series RLC circuit below. Notice *R* is not specified yet. You'll have to figure out what that is.



Assume the circuit above has reached steady state for t < 0. At time t = 0, the switch changes state and disconnects the voltage source, replacing it with a short. We can take the value of V_s as $V_s = 1$ V. For this problem, you may use a calculator/computer for calculations.

We can represent this circuit with the following vector differential equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x}(t) = \underbrace{\begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & 0 \end{bmatrix}}_{A} \vec{x}(t) \tag{13}$$

where $\vec{x}(t) := \begin{bmatrix} I_L(t) \\ V_C(t) \end{bmatrix}$. We may calculate the eigenvalues of A symbolically as

$$\lambda_1 = -\frac{1}{2} \frac{R}{L} + \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{LC}} \tag{14}$$

$$\lambda_2 = -\frac{1}{2} \frac{R}{L} - \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{LC}} \tag{15}$$

- (a) Show that, if $R = 2\sqrt{\frac{L}{C}}$, then the two eigenvalues of A will be identical.
- (b) Using the previous part and the given values for capacitance and inductance, we find that our matrix is

$$A = \begin{bmatrix} -4 \times 10^6 & -4 \times 10^4 \\ 10^8 & 0 \end{bmatrix} \tag{16}$$

Show that the dimension of the eigenspace of $A - \lambda I$ is 1, where λ is the sole eigenvalue of A. Then, explain why we cannot use diagonalization. Here, $\lambda_1 = \lambda_2 = -2 \times 10^6$. Remember that we define the eigenspace of an eigenvalue to be $\text{Null}(A - \lambda I)$.

(c) There are multiple ways to find an upper triangular matrix of *A*, and it is not unique. If you use the Schur decomposition method covered in lecture, you would find an upper triangular matrix *R* and the associated basis *U* for the system matrix *A*. For brevity, we will provide you with the basis *U*:

$$U = \frac{1}{\sqrt{2501}} \begin{bmatrix} 1 & 50 \\ -50 & 1 \end{bmatrix} \tag{17}$$

Note that U is an orthonormal matrix. Find the associated triangular matrix R. You may use your favorite matrix calculator, e.g. Python, Jupyter notebook, MATLAB, Mathematica, Wolfram Alpha, etc.

(d) We have solved for a coordinate system U which triangularizes our system matrix A to the R we found. Apply the algorithm you found in the previous problem to solve for $\vec{x}(t)$, given $I_L(0) = 0$ and $V_C(0) = V_S$. Remember, u(t) = 0 in this case.

Contributors:

- Regina Eckert.
- Anant Sahai.
- Nathan Lambert.
- Sally Hui.
- Sidney Buchbinder.
- Daniel Abraham.
- Anish Muthali.
- Jaijeet Roychowdhury.
- Sanjeet Batra.
- Aditya Arun.
- Alex Devonport.
- Kuan-Yun Lee.
- Ashwin Vangipuram.
- Mike Danielczuk.
- Ayan Biswas.
- Wahid Rahman.