This homework is due on Friday, November 18, 2022 at 11:59PM. Selfgrades and HW Resubmissions are due the following Sunday, November 27, 2022 at 11:59PM.

1. Min Norm Proofs

Recall from lecture and the previous homework that we need to find a value of $\vec{x}_{\star} \in \mathbb{R}^n$ that best approximates

$$A\vec{x}_{\star} \approx \vec{y}$$
 (1)

where $\vec{y} \in \mathbb{R}^m$. This is the typical problem of least squares, but sometimes we can have multiple values of \vec{x} that approximate $A\vec{x} \approx \vec{y}$ equally well. To choose a unique solution, we pick the \vec{x}_* with minimum norm.

If *A* is rank
$$r = \operatorname{rank}(A)$$
 and has SVD $A = U\Sigma V^{\top}$, we can write $U \coloneqq \begin{bmatrix} U_r & U_{m-r} \end{bmatrix}$, $V \coloneqq \begin{bmatrix} V_r & V_{n-r} \end{bmatrix}$,
 $\begin{bmatrix} \Sigma_r & 0 \end{bmatrix}$

and $\Sigma = \begin{bmatrix} \omega_r & \upsilon_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$. From the previous homework, you determined that the optimal solution for \vec{x}_{\star} , given the requirements above, is

$$\vec{x}_{\star} = V \begin{bmatrix} \Sigma_r^{-1} U_r^{\top} \vec{y} \\ \vec{0}_{n-r} \end{bmatrix}$$
(2)

(a) The first property we will show is that $\vec{x}_* \in \text{Col}(A^{\top})$. To do this, first prove that $\text{Null}(A) \perp \text{Col}(A^{\top})$. Use the fact that an SVD of A^{\top} is $A^{\top} = V\Sigma U^{\top}$, and use Theorem 14 from Note 16. Then, show that dim $\text{Null}(A) + \dim \text{Col}(A^{\top}) = n$, and use this fact to argue that if a vector $\vec{\ell} \perp \text{Null}(A)$ (i.e., it is orthogonal to every vector in Null(A)), then $\vec{\ell} \in \text{Col}(A^{\top})$.

(HINT: When we are asked to show Null(A) \perp Col(A^{\top}), you need to argue that every vector in Null(A) is orthogonal to every vector in Col(A^{\top}).)

(b) Show that we can rewrite eq. (2) as

$$\vec{x}_{\star} = V_r \Sigma_r^{-1} U_r^{\top} \vec{y} \tag{3}$$

Use this to show that $\vec{x}_{\star} \perp \text{Null}(A)$ and hence $\vec{x}_{\star} \in \text{Col}(A^{\top})$.

(HINT: For the first part, write out $V = \begin{bmatrix} V_r & V_{n-r} \end{bmatrix}$ and perform block matrix multiplication.) (HINT: For the second part, write $\vec{x}_* = V_r \vec{\alpha}$ where $\vec{\alpha} \coloneqq \sum_r^{-1} U_r^\top \vec{y}$. What does this mean about \vec{x}_* 's relationship with the columns of V_{n-r} ?)

(c) Next, we will prove that, when r = rank(A) = m (so *A* has to be a wide matrix), we have the following min norm solution:

$$\vec{x}_{\star} = A^{\top} \left(A A^{\top} \right)^{-1} \vec{y} \tag{4}$$

Using eq. (3), show that the above equation holds true. (*HINT: Use the compact SVD, namely* $A = U_r \Sigma_r V_r^{\top}$.) (*HINT: U_r should be a square, orthonormal matrix in this case. This is not necessarily the case for* V_r , *but remember that* $V_r^{\top} V_r = I$.)

2. Practical SVD System ID

Please answer all of the questions in the Jupyter notebook associated with this homework.

3. PCA Introduction

Let $X \in \mathbb{R}^{m \times n}$ be defined as $X := \begin{bmatrix} \vec{x}_1 & \cdots & \vec{x}_n \end{bmatrix}$ where each $\vec{x}_i \in \mathbb{R}^m$. Let X have an SVD $X = U\Sigma V^\top$. Now, let $U_\ell := \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_\ell \end{bmatrix}$ where \vec{u}_i is the *i*th column of U. In other words, U_ℓ is the first ℓ columns of U. In this problem, we will go about showing that

$$U_{\ell} \in \operatorname{argmin}_{W \in \mathbb{R}^{m \times \ell}} \sum_{i=1}^{n} \left\| \vec{x}_{i} - WW^{\top} \vec{x}_{i} \right\|^{2}$$
(5)

where $W^{\top}W = I_{\ell}$ (i.e., it is a matrix with orthonormal columns). This is an important result for deriving PCA, as you will see in lecture.

(a) First, show that

$$\left\|\vec{x}_{i} - WW^{\top}\vec{x}_{i}\right\|^{2} = \left\|\vec{x}_{i}\right\|^{2} - \left\|W^{\top}\vec{x}_{i}\right\|^{2}$$
(6)

(HINT: Expand the left hand side of the equation above using transposes. That is, use the fact that $\|\vec{v}\|^2 = \vec{v}^\top \vec{v}$.)

(b) Using the result from the previous part, we can simplify the original optimization problem to say

$$\underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n} \left\| \vec{x}_{i} - WW^{\top} \vec{x}_{i} \right\|^{2} = \underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\left\| \vec{x}_{i} \right\|^{2} - \left\| W^{\top} \vec{x}_{i} \right\|^{2} \right)$$
(7)

$$\underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(- \left\| W^{\top} \vec{x}_{i} \right\|^{2} \right)$$
(8)

$$\underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmax}} \sum_{i=1}^{n} \left\| W^{\top} \vec{x}_{i} \right\|^{2}$$
(9)

where we get the second line from noticing that we cannot change \vec{x}_i , so we remove it from the optimization problem. Then, we pull out the negative to turn the minimization problem into a maximization problem. Now, let $W := \begin{bmatrix} \vec{w}_1 & \cdots & \vec{w}_\ell \end{bmatrix}$. Show that

$$\sum_{i=1}^{n} \left\| \boldsymbol{W}^{\top} \vec{x}_{i} \right\|^{2} = \sum_{k=1}^{\ell} \vec{w}_{k}^{\top} \left(\boldsymbol{X} \boldsymbol{X}^{\top} \right) \vec{w}_{k}$$
(10)

You may use the fact that $\sum_{i=1}^{n} \vec{x}_i \vec{x}_i^{\top} = XX^{\top}$. (*HINT: Start by expanding out the norm squared expression as the sum of squares of the individual entries of* $W^{\top} \vec{x}_i$.)

(c) Use the result of the previous part to show that

$$\sum_{i=1}^{n} \left\| W^{\top} \vec{x}_{i} \right\|^{2} = \sum_{k=1}^{\ell} \vec{\tilde{w}}_{k}^{\top} \Sigma \Sigma^{\top} \vec{\tilde{w}}_{k}$$

$$\tag{11}$$

where $\vec{\tilde{w}}_k = U^\top \vec{w}_k$. Then, argue that $\Sigma \Sigma^\top$ can be written as

$$\Sigma\Sigma^{\top} = \begin{bmatrix} \sigma_{1}^{2} & & & \\ & \ddots & & \\ & & \sigma_{r}^{2} & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix}$$
(12)

where $r = \operatorname{rank}(X)$ (HINT: Use the SVD of X to simplify the XX^{\top} term from the previous part.)

(d) From the previous part, we have the following expression:

$$\sum_{i=1}^{n} \left\| W^{\top} \vec{x}_{i} \right\|^{2} = \sum_{k=1}^{\ell} \vec{\tilde{w}}_{k}^{\top} \begin{bmatrix} \sigma_{1}^{2} & & & \\ & \ddots & & \\ & & \sigma_{r}^{2} & & \\ & & & \sigma_{r}^{2} & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & & 0 \end{bmatrix} \vec{\tilde{w}}_{k}$$
(13)

One may show (via Cauchy-Schwarz) that

if $\vec{\tilde{w}}_k$ are required to be orthonormal (you are not required to show this). Using this fact, find some specific values of $\vec{\tilde{w}}_i$ such that we attain eq. (14) with equality. Then, use this to show that U_ℓ maximizes $\sum_{i=1}^n ||W^\top \vec{x}_i||^2$ and hence is a solution to the original optimization problem.