This homework is due on Friday, November 18, 2022 at 11:59PM. Selfgrades and HW Resubmissions are due the following Sunday, November 27, 2022 at 11:59PM.

1. Min Norm Proofs

Recall from lecture and the previous homework that we need to find a value of $\vec{x}_{\star} \in \mathbb{R}^{n}$ that best approximates

$$
\begin{equation*}
A \vec{x}_{\star} \approx \vec{y} \tag{1}
\end{equation*}
$$

where $\vec{y} \in \mathbb{R}^{m}$. This is the typical problem of least squares, but sometimes we can have multiple values of \vec{x} that approximate $A \vec{x} \approx \vec{y}$ equally well. To choose a unique solution, we pick the \vec{x}_{\star} with minimum norm.
If A is rank $r=\operatorname{rank}(A)$ and has SVD $A=U \Sigma V^{\top}$, we can write $U:=\left[\begin{array}{ll}U_{r} & U_{m-r}\end{array}\right], V:=\left[\begin{array}{ll}V_{r} & V_{n-r}\end{array}\right]$, and $\Sigma=\left[\begin{array}{cc}\Sigma_{r} & 0_{r \times(n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]$. From the previous homework, you determined that the optimal solution for \vec{x}_{\star}, given the requirements above, is

$$
\vec{x}_{\star}=V\left[\begin{array}{c}
\Sigma_{r}^{-1} U_{r}^{\top} \vec{y} \tag{2}\\
\overrightarrow{0}_{n-r}
\end{array}\right]
$$

(a) The first property we will show is that $\vec{x}_{\star} \in \operatorname{Col}\left(A^{\top}\right)$. To do this, first prove that $\operatorname{Null}(A) \perp$ $\operatorname{Col}\left(A^{\top}\right)$. Use the fact that an SVD of A^{\top} is $A^{\top}=V \Sigma U^{\top}$, and use Theorem 14 from Note 16. Then, show that $\operatorname{dim} \operatorname{Null}(A)+\operatorname{dim} \operatorname{Col}\left(A^{\top}\right)=n$, and use this fact to argue that if a vector $\vec{\ell} \perp \operatorname{Null}(A)$ (i.e., it is orthogonal to every vector in $\operatorname{Null}(A)$), then $\vec{\ell} \in \operatorname{Col}\left(A^{\top}\right)$.
(HINT: When we are asked to show $\operatorname{Null}(A) \perp \operatorname{Col}\left(A^{\top}\right)$, you need to argue that every vector in $\operatorname{Null}(A)$ is orthogonal to every vector in $\left.\operatorname{Col}\left(A^{\top}\right).\right)$
(b) Show that we can rewrite eq. (2) as

$$
\begin{equation*}
\vec{x}_{\star}=V_{r} \Sigma_{r}^{-1} U_{r}^{\top} \vec{y} \tag{3}
\end{equation*}
$$

Use this to show that $\vec{x}_{\star} \perp \operatorname{Null}(A)$ and hence $\vec{x}_{\star} \in \operatorname{Col}\left(A^{\top}\right)$.
(HINT: For the first part, write out $V=\left[\begin{array}{ll}V_{r} & V_{n-r}\end{array}\right]$ and perform block matrix multiplication.) (HINT: For the second part, write $\vec{x}_{\star}=V_{r} \vec{\alpha}$ where $\vec{\alpha}:=\Sigma_{r}^{-1} U_{r}^{\top} \vec{y}$. What does this mean about \vec{x}_{\star} 's relationship with the columns of V_{n-r} ?)
(c) Next, we will prove that, when $r=\operatorname{rank}(A)=m$ (so A has to be a wide matrix), we have the following min norm solution:

$$
\begin{equation*}
\vec{x}_{\star}=A^{\top}\left(A A^{\top}\right)^{-1} \vec{y} \tag{4}
\end{equation*}
$$

Using eq. (3), show that the above equation holds true. (HINT: Use the compact SVD, namely $A=U_{r} \Sigma_{r} V_{r}^{\top}$.) (HINT: U_{r} should be a square, orthonormal matrix in this case. This is not necessarily the case for V_{r}, but remember that $V_{r}^{\top} V_{r}=I$.)

2. Practical SVD System ID

Please answer all of the questions in the Jupyter notebook associated with this homework.

3. PCA Introduction

Let $X \in \mathbb{R}^{m \times n}$ be defined as $X:=\left[\begin{array}{lll}\vec{x}_{1} & \cdots & \vec{x}_{n}\end{array}\right]$ where each $\vec{x}_{i} \in \mathbb{R}^{m}$. Let X have an SVD $X=U \Sigma V^{\top}$. Now, let $U_{\ell}:=\left[\begin{array}{lll}\vec{u}_{1} & \cdots & \vec{u}_{\ell}\end{array}\right]$ where \vec{u}_{i} is the i th column of U. In other words, U_{ℓ} is the first ℓ columns of U. In this problem, we will go about showing that

$$
\begin{equation*}
U_{\ell} \in \underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|\vec{x}_{i}-W W^{\top} \vec{x}_{i}\right\|^{2} \tag{5}
\end{equation*}
$$

where $W^{\top} W=I_{\ell}$ (i.e., it is a matrix with orthonormal columns). This is an important result for deriving PCA, as you will see in lecture.
(a) First, show that

$$
\begin{equation*}
\left\|\vec{x}_{i}-W W^{\top} \vec{x}_{i}\right\|^{2}=\left\|\vec{x}_{i}\right\|^{2}-\left\|W^{\top} \vec{x}_{i}\right\|^{2} \tag{6}
\end{equation*}
$$

(HINT: Expand the left hand side of the equation above using transposes. That is, use the fact that $\|\vec{v}\|^{2}=\vec{v}^{\top} \vec{v}$.)
(b) Using the result from the previous part, we can simplify the original optimization problem to say

$$
\begin{align*}
& \underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|\vec{x}_{i}-W W^{\top} \vec{x}_{i}\right\|^{2}=\underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(\left\|\vec{x}_{i}\right\|^{2}-\left\|W^{\top} \vec{x}_{i}\right\|^{2}\right) \tag{7}\\
& \underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(-\left\|W^{\top} \vec{x}_{i}\right\|^{2}\right) \tag{8}\\
& \quad \underset{W \in \mathbb{R}^{m \times \ell}}{\operatorname{argmax}} \sum_{i=1}^{n}\left\|W^{\top} \vec{x}_{i}\right\|^{2} \tag{9}
\end{align*}
$$

where we get the second line from noticing that we cannot change \vec{x}_{i}, so we remove it from the optimization problem. Then, we pull out the negative to turn the minimization problem into a maximization problem. Now, let $W:=\left[\begin{array}{lll}\vec{w}_{1} & \cdots & \vec{w}_{\ell}\end{array}\right]$. Show that

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|W^{\top} \vec{x}_{i}\right\|^{2}=\sum_{k=1}^{\ell} \vec{w}_{k}^{\top}\left(X X^{\top}\right) \vec{w}_{k} \tag{10}
\end{equation*}
$$

You may use the fact that $\sum_{i=1}^{n} \vec{x}_{i} \vec{x}_{i}^{\top}=X X^{\top}$. (HINT: Start by expanding out the norm squared expression as the sum of squares of the individual entries of $W^{\top} \vec{x}_{i}$.)
(c) Use the result of the previous part to show that

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|W^{\top} \vec{x}_{i}\right\|^{2}=\sum_{k=1}^{\ell} \overrightarrow{\widetilde{w}}_{k}^{\top} \Sigma \Sigma^{\top} \overrightarrow{\widetilde{w}}_{k} \tag{11}
\end{equation*}
$$

where $\overrightarrow{\widetilde{w}}_{k}=U^{\top} \vec{w}_{k}$. Then, argue that $\Sigma \Sigma^{\top}$ can be written as

$$
\Sigma \Sigma^{\top}=\left[\begin{array}{llllll}
\sigma_{1}^{2} & & & & & \tag{12}\\
& \ddots & & & & \\
& & \sigma_{r}^{2} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right]
$$

where $r=\operatorname{rank}(X)$ (HINT: Use the SVD of X to simplify the $X X^{\top}$ term from the previous part.)
(d) From the previous part, we have the following expression:

$$
\sum_{i=1}^{n}\left\|W^{\top} \vec{x}_{i}\right\|^{2}=\sum_{k=1}^{\ell} \overrightarrow{\widetilde{w}}_{k}^{\top}\left[\begin{array}{cccccc}
\sigma_{1}^{2} & & & & & \tag{13}\\
& \ddots & & & & \\
& & \sigma_{r}^{2} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right] \overrightarrow{\widetilde{w}}_{k}
$$

One may show (via Cauchy-Schwarz) that

$$
\sum_{k=1}^{\ell} \overrightarrow{\widetilde{w}}_{k}^{\top}\left[\begin{array}{cccccc}
\sigma_{1}^{2} & & & & & \tag{14}\\
& \ddots & & & & \\
& & \sigma_{r}^{2} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right] \overrightarrow{\widetilde{w}}_{k} \leq \sum_{k=1}^{\ell} \sigma_{k}^{2}
$$

if $\overrightarrow{\widetilde{w}}_{k}$ are required to be orthonormal (you are not required to show this). Using this fact, find some specific values of $\overrightarrow{\widetilde{w}}_{i}$ such that we attain eq. (14) with equality. Then, use this to show that U_{ℓ} maximizes $\sum_{i=1}^{n}\left\|W^{\top} \vec{x}_{i}\right\|^{2}$ and hence is a solution to the original optimization problem.

