
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Homework 13

This homework is due on Friday, December 2, 2022 at 11:59PM. Self-
grades and HW Resubmissions are due the following Friday, December
9, 2022 at 11:59PM.

1. Linearizing for understanding amplification

Linearization isn’t just something that is important for control, robotics, machine learning, and opti-
mization — it is one of the standard tools used across different areas, including circuits.

The circuit below is a voltage amplifier, where the element inside the box is a bipolar junction transis-
tor (BJT). You do not need to know what a BJT is to do this question.

Figure 1: Voltage amplifier circuit using a BJT

The BJT in the circuit can be modeled quite accurately as a nonlinear, voltage-controlled current
source, where the collector current IC is given by:

IC(Vin) = IS · e
Vin

VTH , (1)

where VTH is the thermal voltage. We can assume VTH = 26 mV at room temperature. IS is a constant
whose exact value we are not giving you because we want you to find ways of eliminating it in favor
of other quantities whenever possible.

The goal of this circuit is to pick a particular point (V?
in, V?

out) so that any small variation δVin in the
input voltage Vin can be amplified to a relatively larger variation δVout in the output voltage Vout.
In other words, if Vin = V?

in + δVin and Vout = V?
out + δVout, then we want the magnitude of the

‘amplification gain’ given by
∣∣∣ δVout

δVin

∣∣∣ to be large. We’re going to investigate this amplification using
linearization.
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(NOTE: in this problem, δV is single variable indicating a small variation in V, not δ × V.)

(a) Write a symbolic expression for Vout as a function of IC, VDD and R in Fig 1.

(b) Now let’s linearize IC in the neighborhood of an input voltage V?
in and a specific I?C. Assume that

you have a found a particular pair of input voltage V?
in and current I?C that satisfy the current

equation (1).

We can look at nearby input voltages and see how much the current changes. We can write the
linearized expression for the collector current around this point as:

IC(Vin) = IC(V?
in) + gm(Vin − V?

in) = I?C + gm δVin (2)

where δVin = Vin −V?
in is the change in input voltage, and gm is the slope of the local linearization

around (V?
in, I?C). What is gm here as a function of I?C and VTH?

(HINT: Find gm by taking the appropriate derivative around the operating point. You should recognize a
part of your equation is equal to the current operating point I?C = IC(V?

in), so your final form should not
depend on IS. Also, note that in circuits terminology, "operating point" is defined to be the point around
which we linearize input-output relationship.)

(c) We now have a linear relationship between small changes in current and voltage, δIC = gm δVin

around a known solution (V?
in,I?C).

As a reminder, the goal of this problem is to pick a particular point (V?
in, V?

out) so that any small
variation δVin in the input voltage Vin can be amplified to a relatively larger variation δVout in the
output voltage Vout. In other words, if Vin = V?

in + δVin and Vout = V?
out + δVout, then we want

the magnitude of the “amplification gain” given by
∣∣∣ δVout

δVin

∣∣∣ to be large.

Plug in your linearized equation for IC in the answer from part (a). It may help to define the
output voltage operating point as V?

out, where

V?
out = VDD − RI?C (3)

so that we can view Vout = V?
out + δVout when we have Vin = V?

in + δVin.

Find the linearized relationship between δVout and δVin. The ratio δVout
δVin

is called the “small-
signal voltage gain” of this amplifier around this operating point.

(d) Assuming that VDD = 10 V, R = 1 kΩ, and I?C = 1 mA when V?
in = 0.65 V, verify that the

magnitude of the small-signal voltage gain
∣∣∣ δVout

δVin

∣∣∣ is approximately 38.

Next, if I?C = 9 mA when V?
in = 0.7 V with all other parameters remaining fixed, verify that the

magnitude of the small-signal voltage gain
∣∣∣ δVout

δVin

∣∣∣ between the input and the output around
this operating point is approximately 346.

(HINT: Remember VTH = 26 mV.

)

(e) If you wished to make an amplifier with as large of a small signal gain as possible, which oper-
ating (bias) point would you choose among V?

in = 0.65 V and V?
in = 0.7 V?
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This shows you that by appropriately biasing (choosing an operating point), we can adjust what our
gain is for small signals. While we just wanted to show you a simple application of linearization here,
these ideas are developed a lot further in EE105, EE140, and other courses to create things like op-
amps and other analog information-processing systems. Simple voltage amplifier circuits like these
are used in everyday circuits like the sensors in your smartwatch, wireless transceivers in your phone,
and communication circuits in CPUs and GPUs.
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2. Linearization of a scalar system

In this question, we linearize the scalar differential equation

d
dt

x(t) = sin(x(t)) + u(t) (4)

around equilibria, discretize it, and apply feedback control to stabilize the resulting system.

(a) The first step is to find the equilibria that we will linearize around. Recall that equilibria are the
values of (x, u) such that d

dt x(t) = 0. Suppose we want to linearize around equilibria (x?, u?)

where u? = 0. Sketch sin(x) for −4π ≤ x ≤ 4π and intersect it with the horizontal line at 0.
Then, show that x?m = mπ and u? = 0 are equilibria of system (4).

(b) We will linearize around x?−1 = −π and x?0 = 0. Looking at the sketch we made, these seem
representative of the two types of equilibria where u? = 0. Linearize system (4) around the
equilibrium (x?0 , u?) = (0, 0). What is the resulting linearized scalar differential equation for
δx(t) = x(t)− x?0 = x(t)− 0, involving δu(t) = u(t)− u? = u(t)− 0?

(c) Given an arbitrary, continuous linear system as in

dx(t)
dt

= λx(t) + bu(t) (5)

discretizing it into intervals of ∆ gives the discrete-time system

x[i + 1] = eλ∆x[i] +
b(eλ∆ − 1)

λ
u[i] (6)

Using this result, discretize the approximate linear system. Is the (approximate) discrete-time
system stable?

(d) Now linearize the system (4) around the equilibrium (x?−1, u?) = (−π, 0). What is the resulting
scalar differential equation for δx(t) = x(t) − (−π) involving δu(t) = u(t) − 0? As before,
discretize the approximate linear system. Is the (approximate) discrete-time system stable?

(e) Suppose for the two linearized discrete-time systems that you found in the previous parts, we
apply the feedback law

δu[i] = −k(δx[i]− x?).

For what range of k values would the resulting linearized discrete-time systems be stable?
Your answer will depend on ∆.
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3. Tracking a Desired Trajectory in Continuous Time

The treatment in 16B so far has treated closed-loop control as being about holding a system steady at
some desired operating point, by placing the eigenvalues of the state transition matrix. This control
used something proportional to the actual present state to apply a control signal designed to bring the
eigenvalues in the region of stability. Meanwhile, the idea of controllability itself was more general
and allowed us to make an open-loop trajectory that went pretty much anywhere. This problem is
about combining these two ideas together to make feedback control more practical — how we can
get a system to more-or-less closely follow a desired trajectory, even though it might not start exactly
where we wanted to start and in principle could be affected by small disturbances throughout.

In this question, we will also see that everything that you have learned to do closed-loop control in
discrete-time can also be used to do closed-loop control in continuous time.

Consider the specific 2-dimensional system

d
dt
~x(t) = A~x(t) +~bu(t) + ~w(t) =

[
2 1
0 2

]
~x(t) +

[
1
1

]
u(t) + ~w(t) (7)

where u(t) is a scalar valued continuous control input and ~w(t) is a bounded disturbance (noise).

(a) In an ideal noiseless scenario, the desired control signal u∗(t) makes the system follow the de-
sired trajectory ~x∗(t) that satisfies the following dynamics:

d
dt

~x∗(t) = A~x∗(t) +~bu∗(t). (8)

The presence of the bounded noise term ~w(t) makes the actual state~x(t) deviate from the desired
~x∗(t) and follow (7) instead. In the following subparts, we will analyze how we can adjust the
desired control signal u∗(t) in (8) to the control input u(t) in (7) so that the deviation in the state
caused by ~w(t) remains bounded.

Represent the state as ~x(t) = ~x∗(t) + ∆~x(t) and u(t) = u∗(t) + ∆u(t). Using (7) and (8), show
that we can represent the evolution of the trajectory deviation ∆~x(t) as a function of the con-
trol deviation ∆u(t) and the bounded disturbance ~w(t) as:

d
dt

∆~x(t) = A∆~x(t) +~b∆u(t) + ~w(t). (9)

(HINT: Write out equation (7) in terms of ~x∗(t), ∆~x(t), u∗(t) and ∆u(t).))

(b) Are the dynamics that you found for ∆~x(t) in part 3.a stable? Based on this, in the presence of
bounded disturbance ~w(t), will ~x(t) in (7) follow the desired trajectory ~x∗(t) closely if we just
apply the control u(t) = u∗(t) to the original system in (7), i.e. ∆u(t) = 0?

(HINT: Use the numerical values of A and~b from (7) in the solution from part (b) to determine stability
of ∆~x(t).))

(c) Now, we want to apply state feedback control to the system using ∆u(t) to get our system to fol-
low the desired trajectory ~x∗(t). For the ∆~x(t), ∆u(t) system, apply feedback control by letting
∆u(t) = F∆~x(t) =

[
f0 f1

]
∆~x(t) that would place both the eigenvalues of the closed-loop

∆~x(t) system at −10. Find f0 and f1.
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(d) Based on what you did in the previous parts, and given access to the desired trajectory ~x∗(t), the
desired control u∗(t), and the actual measurement of the state ~x(t), come up with a way to do
feedback control that will keep the trajectory staying close to the desired trajectory no matter
what the small bounded disturbance ~w(t) does. (HINT: Express the control input u(t) in terms of
u∗(t), ~x∗(t), and ~x(t).))
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