
EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Final Lab Report Solutions

Introduction
The final lab report tests your understanding of all EECS 16B Labs, with an emphasis on conceptual and analytical

understanding. It also allows you to look at these labs from a bigger picture and reflect on your design process and
choices. You may use your homeworks, pre-labs, labs, lab notes, presentation slides, and any other resources we
provided throughout the semester to help you. However, all of your answers and explanations must be in your own
words; you are not allowed to directly copy from those resources.

This final lab report is an abridged version of the lab report from last semester, so the style of this lab report is
quite different than the midterm lab report. Due to a lack of standard checkoffs, Section 4 (Classification) will not be
graded.

Requirements

Format
The report is to be done with your lab group using LATEX or Google Docs/Microsoft Word. At the top of the report,
please include the names and emails of all your group members, as well as the group ID you use for checkoffs.

Contributions
Under Section 7, please detail each group member’s contributions to the lab report. If we find a highly dispro-
portionate amount of work distribution among the group, we will adjust grades accordingly to penalize non-
contributors. Please cite any sources outside of course materials, if used.

Submission
The final lab report is (tentatively) due on Friday, December 9. Only one group member should submit the lab
report to Gradescope and the rest of the group members should be added to the same submission.

1 System ID
1. How did you choose the region to collect finer data on (data fine.txt)? Why is it important to choose such a

region to run least-squares regression on?

Solution: We select a region where the data points from data course.txt are fairly linear.
It is important because we’re modeling our data using least-squares regression, which best models linear data.
The best model would apply if the relationship between velocity and PWM input u[i] is linear.

2. What do θ and β represent physically, not mathematically?

Solution: θ - change in velocity for each unit increase in PWM input. Basically, the “sensitivity” of the motors.
Not “slope.” Always positive.
β - constant velocity offset, can be understood as the input required to overcome static friction. Imperfections
catch-all due to external factors from the surroundings or environment. “Constant offset in velocity” is also
acceptable. Not “y-intercept or negative of y-intercept.” Not “speed without any voltage input.” Usually negative.

3. Why do we have separate θ and β values for the left and right wheels?

Solution: Both motors are different, and may react differently to a change in input PWM (have different sensitiv-
ities). They also likely have different resistances that affect the “constant velocity offset” needed to appropriately
model them or to overcome any external imperfections from the surroundings or environment like static friction.

4. Why do we set v∗ to the midpoint of our overlapping wheel velocity range, instead of closer to the boundaries?
What would happen if we operated our car at a velocity outside of the overlapping velocity range?

©UC Berkeley, EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission.



EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Final Lab Report Solutions

Solution: To maximize margin of error on both sides, so that both wheels can continue following our model,
both when we’re going straight and turning.
If we operate our car outside of this overlapping velocity range, at least one wheel will not be able to drive at
that velocity. This means that the two wheels will travel at different velocities and the car will never be able to
go straight. Also, it is likely that our linear model no longer holds, and the approximation gets worse. We expect
that the further outside the operating range we get, the worse we get at predicting the actual velocity the car will
run based on a given input PWM. This means our car will likely not drive as intended.

2 Controls Part 1
1. What are the open-loop model equations for our PWM input, u[i]?

Solution:

uL[i] =
v∗+βL

θL

uR[i] =
v∗+βR

θR

(1)

2. What is the purpose of the jolts? Why might the left and right jolts be different?

Solution: In order to start our cars from rest, we must overcome static friction, and our PWM inputs may not be
sufficient for this. In order to overcome friction, we provide each motor with a large PWM for a brief period of
time/first couple of time steps.
The two motors have different sensitivities to the PWM input (theta) and different velocity offsets (beta), so they
require different inputs to overcome the static friction. This is also evidence of difference in motor parameters,
motor efficiencies, or mass imbalance of the car.

3. Why does open-loop control fail? Why do we need to implement closed-loop control in order to have the car
travel straight?

Solution: In open-loop control, we set the PWM inputs once and let the car do its thing without correcting its
behavior during its run. The car can’t tell the difference between whether it’s driving straight or turning. Note
that the PWM inputs for open-loop are always constant and are not adjusted at all.
Because of model mismatch cases (difference between actual and model theta/beta values) and disturbances/noise
introduced by the environment, we need to implement closed-loop control to have the car travel straight.

4. What are the closed-loop model equations for our PWM input, u[i]? Explain the purpose of each term.

Solution:

uL[i] =
v∗− fLδ [i]+βL

θL

uR[i] =
v∗+ fRδ [i]+βR

θR

(2)

uL[i] and uR[i] - input PWM for each wheel, controls velocity of the wheels
v∗ - operating velocity point
θ - change in velocity per unit increase in input PWM, “sensitivity” of the motors to change in PWM
β - constant velocity offset, represents friction and other imperfections
fL and fR - feedback control gain for each wheel, proportionally scales delta, defined to be non-negative
δ [i] - state variable, representing difference in distances traveled between left wheel minus right wheel

5. When testing out different f-values in practice, how do you know if the system eigenvalue has gone from positive
to negative based on the car’s behavior?

Solution: Eigenvalue moves to negative when we start seeing oscillations in the car’s movement. This is because
delta’s polarity will flip every time step.

©UC Berkeley, EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission.



EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Final Lab Report Solutions

6. What effect does setting both f-values to 0 have on the car’s control scheme? How is this different from non-zero
f-values? Why are non-zero f-values necessary?

Solution: Open-loop control if both f-values set to 0. It doesn’t take feedback anymore, so non-zero f-values
are needed in order to use feedback control to correct the car.

7. Why can’t we use negative f-values for both wheels? If we wanted to use negative f-values for both wheels, how
should we change our closed-loop model equations such that our car goes straight and corrects any errors in its
trajectory?

Solution: Negative f-values for both wheels would mean that we’re reinforcing the disturbance (positive feed-
back). It also brings the magnitude of the eigenvalue over 1, which causes the system to become unstable.
Method 1:

(a) uL[i] =
v∗+ fLδ [i]+βL

θL

(b) uR[i] =
v∗− fRδ [i]+βR

θR

(c) δ [i+1] = (1+ fL + fR)δ [i]

Method 2: δ [i] = dR[i]−dL[i]

8. What does a zero delta ss value tell you about your car’s trajectory? What about a non-zero delta ss value?
What kind of error is it supposed to correct when we add it to our control scheme? (Hint: Think about the
difference between the trajectories for a zero versus a non-zero delta ss value.)

Solution: Zero delta ss: Car goes straight in the same exact heading as when it started.
Non-zero delta ss: Car has turned and is now driving straight, but in a different direction/heading than it was
initially placed in.
Steady-state error correction: error caused by model mismatch

3 Controls Part 2
1. How did you change the closed-loop model equations to allow the car to turn? Write the equations below and

explain how they change for turning left, turning right, and going straight.

Solution: Turn by adding time-dependent delta reference to delta, δ = δ +δre f .

Left: return positive delta reference, so δ = δ +
lv∗i
mr

Right: return negative delta reference, so δ = δ − lv∗i
mr

Straight: return 0 for delta reference, so δ = δ +0 = δ

2. Why do we divide v∗ by m = 5 for the turning expressions?

Solution: Because our control loop and data collection have different sampling frequencies and periods, and we
want to add in our delta reference in each time step of the control loop. Our data collection was sampled
every half a second, while the controller was sampled every tenth of a second. Essentially, the control loop was
sampled 5 times faster than the data collection, m = Fc

Fd
= 5.

To correct for this, we want to make our velocity (distance/timestep) 5 times smaller, so we use v∗
m instead of v∗.

3. How is using STRAIGHT CORRECTION different from delta ss in Controls Part 1?

Solution: delta ss: steady-state error correction, delta as time step i approaches infinity and converges. Sup-
posed to correct when the car sometimes turns to a different direction/heading and then drives straight. Delta
must converge to a constant (zero or non-zero) value for the car to drive straight (wheels have equal velocities).
delta ss is added to delta in every time step.
straight correction: used when car (encoders) think car is driving straight (delta converges to constant
(zero or non-zero) value) but in reality it’s still turning slightly at a constant rate; supposed to instruct car to turn

©UC Berkeley, EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission.



EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Final Lab Report Solutions

slightly in opposite direction to correct for mechanical differences like axle mismatch/wobble, etc.
They are different in how the car behaves. Both delta ss and straight correction involve cases where
our closed-loop controller sees that delta approaches a constant value (delta ss), but the car’s path/trajectory
is different in the two cases (they are used to correct different things). This is because for delta ss, the car is
already traveling straight but for straight correction, the car is still turning.

4 Classification
1. What are some characteristics of a good set of four words for classification? Provide at least two features.

Solution: A good set of four words will have different envelopes – the shape of their speech vectors should be
and look distinct. At least two features must be provided, including but not limited to the following: different
number of syllabus, words or parts of words that can be enunciated differently / sound distinct, words with
different endings, etc.

2. What are length, prelength, and threshold for our data processing? Include both the definitions and the values
you chose.

Solution: Length, prelength, and threshold are used for word alignment to clean the data set.
Length: total number of samples/features for each word
Prelength: number of samples/features before threshold is reached
Threshold: Fraction of max signal, used to determine the start of the word within the recording
Provided reasonable values for all 3 (default values were length 80, prelength 5, threshold 0.5)

3. Why do we process our data so that the words are aligned before we run SVD/PCA on it?

Solution: Looking for features in the words, so we need the data to have a common shape first by aligning
words when preprocessing recordings. Otherwise, the data is all over the place and has no common trend over
time.

4. Why do we need to use SVD/PCA to represent our data set?

Solution: SVD/PCA helps us choose the most important features out of our data set and performs a dimension-
ality reduction. Launchpad/Arduino has memory/space limitations, so it’s easier to work with if we project our
data onto 2-3 dimensions from length-dimensions.

5. Why do we use the V T vectors for our lab instead of the vectors inside of the U matrix returned by SVD?

Solution: The columns of V (rows of V T ) hold the principal components/features of the rows, while the columns
of U hold principal components/features of the columns. Our words are stored in rows (we vertically stacked the
horizontal recorded word vectors to make the data matrix), so we take the V T row vectors since we’re interested
in the features of the words.

6. Why can we simply take the dot product when projecting our recorded data vector onto the principal component
vectors?

Solution: We care about scalar projections. The matrix of projected coefficients XP, where X is our demeaned
data matrix and P is our basis of principal component vectors, all contain scalars. Since the principal components
are orthonormal, they have unit norm and a dot product between the recorded data vector and the principal
component vector is sufficient (we do not need to divide by norm of principal component vector since it is 1).
But why are the principal components orthonormal? The U and V T matrices returned by the SVD of our
demeaned data matrix are orthogonal/orthonormal matrices, so their row and column vectors are all orthonormal
and have unit norm.

7. If we keep increasing the number of PCA vectors, how does the increase in accuracy with each subsequent PCA
vector change?

Solution: This is like the Law of Diminishing Returns. As we increase the number of PCA vectors / principal
components, the classification accuracy of our data set increases but slows down over time (increasing but at a
decreasing rate).

©UC Berkeley, EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission.



EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Final Lab Report Solutions

We reach a point where adding the number of principal components is no longer significant, since the drawback
of increasing memory on Launchpad/Arduino outweighs the small accuracy increase.

8. What is EUCLIDEAN THRESHOLD? What is LOUDNESS THRESHOLD?

Solution: EUCLIDEAN THRESHOLD sets the maximum distance that the recording can be from any centroid after
projection and demeaning. If it’s too far from the closest centroid, the recording is thrown away and not classi-
fied as an instruction.
LOUDNESS THRESHOLD sets the minimum amplitude/loudness of the recording before the recording is recog-
nized as a word. Otherwise, it is discarded and treated as noise.

5 Integration/Final Demo
1. Briefly discuss what you learned throughout the S1XT33N car project and in the labs. What was your favorite

part? Least favorite part? Please answer this question individually.

Solution: Graded on effort.

2. What was the most difficult bug you encountered this semester? How did you resolve the bug? What did you
learn from the debugging experience?

Solution: Graded on effort.

6 Feedback
Please provide any feedback you have about 16B lab or anything we can do to better support you.

7 Collaborators and Sources
Please detail each group member’s contributions to the lab report. Also, cite any sources you used that were not
provided with the course materials.

©UC Berkeley, EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission.


	System ID
	Controls Part 1
	Controls Part 2
	Classification
	Integration/Final Demo
	Feedback
	Collaborators and Sources

