
Lab 2: Analog to Digital Circuit Interfaces

EECS 16B Fall 2022

Slides: links.eecs16b.org/lab2-slides

Schools Are Removing Analogue Clocks Because Kids Can't Read Them
As our age becomes more technological, we've become more dependant
on the our screens. And this has had a very drama...

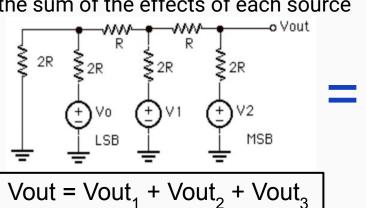
Logistics: Makeups/Extensions

- Makeup: you need to attend a different lab section to finish the lab on time
 - Sign up at https://makeup.eecs16b.org
 - Only one group member needs to sign up
 - Labs are due by the end of your next section
- **Extension:** you need additional time to complete the lab
 - Same form as HW Extensions: https://eecs16b.org/extensions
 - Without an extension, late labs are 50% credit

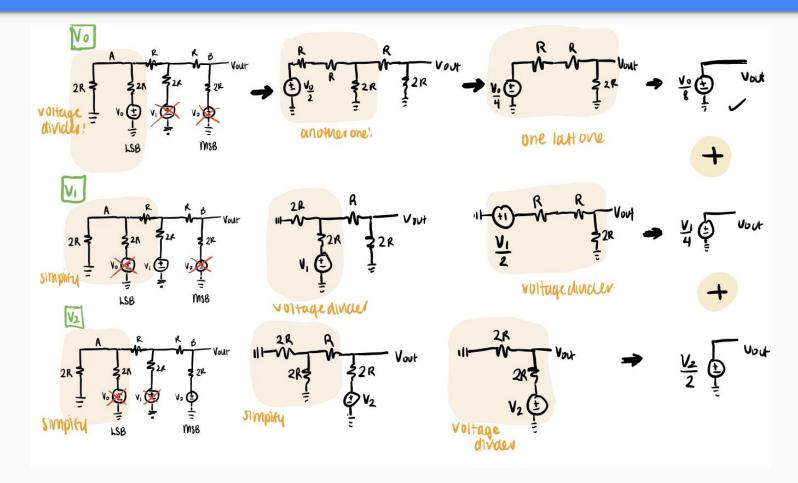
Lab 2 Overview: DAC and ADC

- DAC = <u>Digital</u> to <u>Analog</u> <u>Converter</u>
- ADC = <u>A</u>nalog to <u>D</u>igital <u>C</u>onverter
- · Real world is continuous, but computers need to store data digitally
 - Need to find a way to convert between analog and digital for signals
 - EE 123 discusses consequences of digitally sampling analog signals, EE 140 discusses the design of DACs/ADCs
- DAC/ADC in your life:
 - DAC for MP3 players, analog TVs, video on cell phones
 - ADC for sound/video recording
 - · VoIP (voice over IP) uses both!

Can you think of a few more examples?

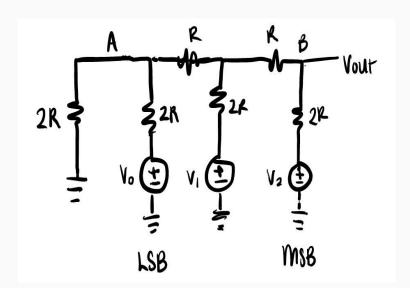

Review: Superposition

• Since resistive circuits are linear, we can apply the principle of superposition:


Treat each source independently – zero out all but one

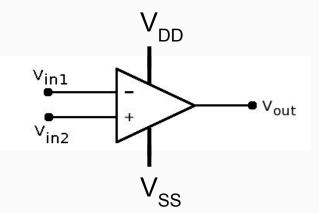
• The total effect is the sum of the effects of each source

Example:

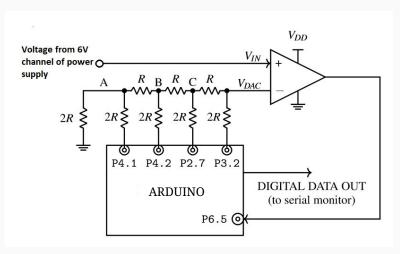


Review: Superposition Example

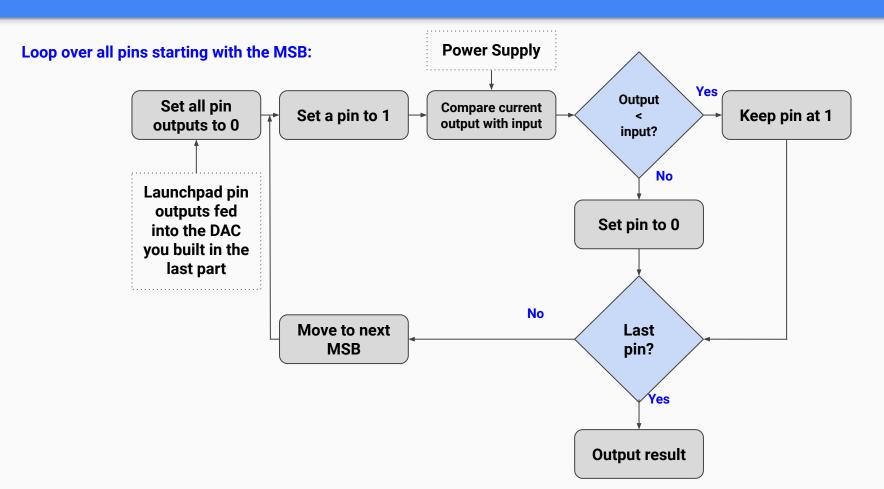
Vout = $\frac{\sqrt{0}}{8} + \frac{\sqrt{1}}{4} + \frac{\sqrt{2}}{2}$ least significant bit white


Review: Superposition Example

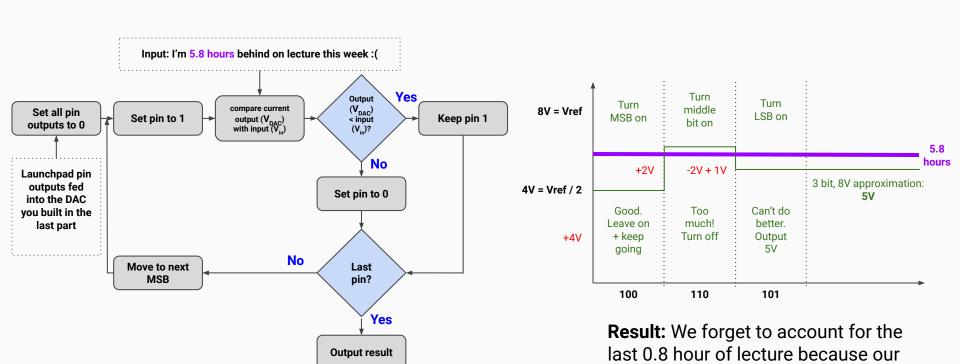
Treat each input as a bit. 3 bits represents 0 to $2^3 - 1 = 7$, [0,7] You can set Vo= V1= V2 = 81 and it'll give you -00111 $V_{\text{out}} = \frac{V_0}{R} + \frac{V_1}{4} + \frac{V_2}{2} = 1 + 2 + 4 = 7$ 'turn off' Vo=OV → Ob 110 Vort = $\frac{V_0}{8}^0 + \frac{V_1}{4} + \frac{V_2}{2} = 0 + 2 + 4 = 6$ "Hurn on " $V_0 = 8V$, "turn off" $V_1 = 0V$ -> 06 101 $V_{\text{out}} = \frac{V_0}{R} + \frac{U_1}{A}^0 + \frac{V_2}{2} = 1 + 0 + 4 = 5$ we can keep going, counting down to 0. 00100 = 410, 00011 = 310, 00010 = 210, 00001 = 110, 00000 = 010


Review: Comparators

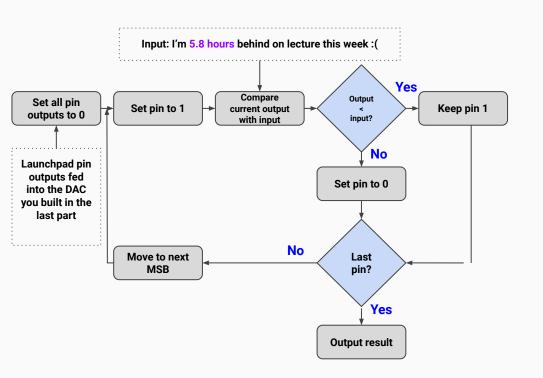
- A device that compares two voltages (or currents) and outputs a digital signal to indicate which is larger
- Op-amp Implementation:
 - If $V_{in2} > V_{in1}$, V_{out} goes to VDD
 - If $V_{in1} > V_{in2}$, V_{out} goes to VSS
 - (think: if V_{out} is connected to V⁻, its value will bring V⁻ closer to V⁺)
- NOTE: Arduinos use 5V pin logic
 - VDD = 5 V
 - VSS = 0 V



Review: ADC


• ADC - The Arduino uses binary search when turning on MSB (most significant bit) to LSB (least significant bit) and comparing the resulting V_{DAC} with V_{in}

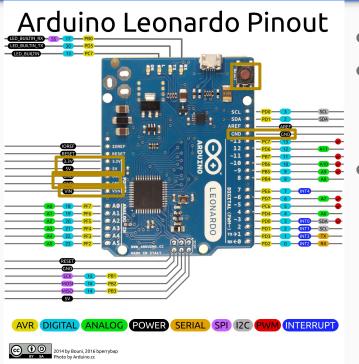
Successive Approx. Register ADC



Successive Approx. Register ADC

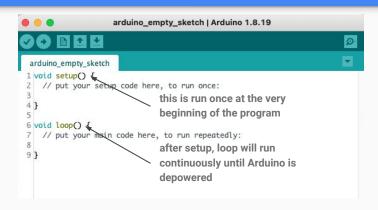
3 bits cannot represent it.:(

Successive Approx. Register ADC



We're trying to match our 5.8V input:

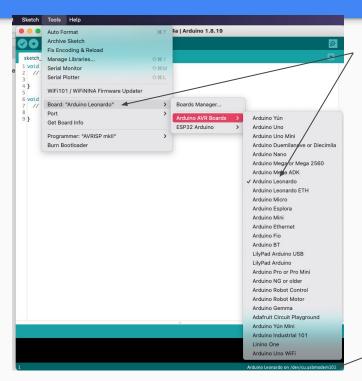
- Vref = 8V, we have 3 bits
- Turn on MSB: 1 0 0
 4V < 5.8V, keep going, keep bit on
- 1. We can do better: 1 1 0 (4V + 2V) > 5.8V, too much, turn off
- 1. Try the next pin (LSB): 1 0 1 (4V + 1V) < 5.8V
- 1. That's all folks, we're out of bits Output: 5V


Result: We forget to account for the last 0.8 hour of lecture because our 3 bits cannot represent it. :(

Introduction to Arduinos

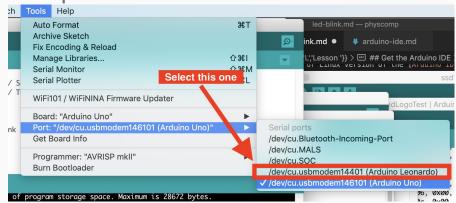
- There are 4 main "Pin Modes"
- Digital: High (5V) or Low (0V)
 - 1. Digital Output
 - 2. Digital Input
 - Analog: range from 0-5V
 - 3. Analog Output: mapped from 0 255
 - 4. Analog Input: mapped to 0 1023

Introduction to Arduinos


Note: Arduino is programmed in **C** via the <u>Arduino IDE</u> (pre-installed on lab computers)

- Code is uploaded from computer to Arduino via microUSB port
- If powered, code is ALWAYS running
 - RST -> restart
 - Unpowering and powering Arduino -> begin re-running whatever was last uploaded
- If you find this to be an issue, the easiest solution is to upload a blank program

Quick Rundown: Arduino vs Launchpads


- Launchpads operate on 3.3V logic while Arduinos operate on 5V logic
 - However, for most labs other than this one, we will be keeping our circuits operating at 3.3V for stability reasons.
- External Power: the Launchpad can take 5V as an input to its 5V pin, while
 Arduino requires 7-12V as an input to its V_in pin.
 - o safe to power the Arduino via both the micro-USB and V_in at the same time
 - Launchpads... however... go bakoom
- You actually see the word Arduino outside of 16B, when did you ever see the word "Launchpad" other than complaints about 16B

Uploading Code to Arduino

Ensure this says Arduino Leonardo, otherwise select it

- PORT selection
- Upload button

Arduino *should* auto-detect your port

(works 100% of the time 25% of the time)

Arduino Logistics

- Arduinos will be passed out during lab today
- Arduinos are property of 16B and have to be returned to us by the end of the semester
- Each Arduino will have a unique ID
 - Fill out https://eecs16b.org/lab-groups once you've received your Arduino

General Reminders/Habits

- connect all grounds together, including the Arduino GND pin (any works)
- In general, avoid having voltage/currents going into your Arduino if your Arduino isn't already powered
- Check that your probes are working by probing a known voltage value
 - le 5V/3.3V/GND from power supply
- PLEASE CLEAN UP AFTER YOURSELF!! Put probes back, pack up kits, etc.
- Don't unplug computers

Let's get into it!

Important Forms/Links

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Extension Requests: https://eecs16b.org/extensions
- Slides: <u>links.eecs16b.org/lab2-slides</u>
- Anon Feedback: https://eecs16b.org/lab-anon-feedback
- https://eecs16c.org