
EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Lab Note 6

Lab Note 6: System Identification
In this phase, we will develop a linear model for the car system and collect data to estimate the free parameters.

The specific goals of this phase are as follows:

• Verify that all sensors continue to work properly

• Understand the S1XT33N system model

• Collect data

• Use least squares to fit the data to our model and estimate the free parameters

Deriving the Car Model
As we continue developing S1XT33N, we’d like to better understand the car model that we will be using to

develop a control scheme in a future lab. In order to model the velocity of each wheel, we must have a way to measure
it; this is where the encoder (which in this lab is a photointerruptor) comes in. As a wheel on the car turns, there is an
encoder disc with cutouts in it that turns with the wheel. The encoder shines a light between its two “legs”, and as the
wheel turns, the beam of light is interrupted by the spokes of the encoder disc at a rate proportional to the velocity of
the car. The encoder is therefore able to detect how fast the wheel is turning by looking at the number of times that it
records an interruption in the beam of light, which is what we call a “tick”, over a specific time interval.

As much as we would like our system modeling the velocity of the wheels to be linear, in reality our system (as
with most real-life systems) is not. Modeling it accurately would involve a highly complicated model, which we do
not want to implement in this class. So, instead of designing a complex nonlinear model, we will approximate the
system with a linear model to work for small perturbations around an equilibrium point. You will locate this operating
point in part 4 of the lab.

Linear models are particularly useful because their solutions, stability, and controllers can be studied with linear
algebra. It is common practice to approximate a nonlinear model with a linear one that is valid near a desired operating
point because only limited control methods are applicable to nonlinear systems.

The following model applies separately to each wheel (and associated motor) of the car:

vL[i] = dL[i+1]−dL[i] = θLuL[i]−βL (1)

vR[i] = dR[i+1]−dR[i] = θRuR[i]−βR (2)

Meet the variables at play in this model:

• i - The current timestep of the model. Since we model the car as a discrete system, this will advance by 1 for
every new sample in the system.

• d[i] - The total number of ticks advanced by a given encoder (the values may differ for the left and right
motors–think about when this would be the case).

• v[i] - The discrete-time velocity (in units of ticks/timestep) of the wheel, measured by finding the difference
between two subsequent tick counts (d[i+1]−d[i]).

• u[i] - The input to the system (in duty cycle). The motors that apply force to the wheels are driven by an input
voltage signal. This voltage is delivered via a technique known as pulse width modulation (PWM), where the
average value of the voltage (which is what the motor is responsive to) is controlled by changing the duty cycle
of the voltage waveform. The duty cycle, or percentage of the square wave’s period for which the square wave is
HIGH, is mapped to the range [0,255]. Thus, u[i] takes a value in [0,255] representing the duty cycle. The duty
cycle is equal to the value of u[i]

255 . For example, when u[i] = 128, the duty cycle is roughly 50%, so the Arduino
delivers a PWM wave signal that spends half of its period HIGH and the other half LOW to the motor circuits we
built in the last lab. This circuit amplifies the voltage range of the PWM wave from [0V, 5V] from the Arduino
output to [0V, 9V] across the motor, and delivers half the maximum power to the motor, with its average voltage
across it being 9V

2 = 4.5V . When u[i] = 0, the duty cycle is 0%, and the motor controller delivers 0 V.

1 Lab Note 6 — System ID (v3.0)

https://learn.sparkfun.com/tutorials/pulse-width-modulation/all


EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Lab Note 6

• θL,R - Relates change in input u to change in velocity: θ = ∆v[i]
∆u[i] =

v[i+1]−v[i]
u[i+1]−u[i] . Its units are ticks/(timestep · duty

cycle). Since our model is linear, we assume that θ is the same for every unit increase in u[i], as it represents
the slope of the graph of velocity versus u[i]. θ is empirically determined after collecting the car’s velocity
vs. input data. θ depends on many physical phenomena, such as properties of the motor, so for the purpose of
this class, we will not attempt to create a mathematical model based on the actual physics. However, you can
conceptualize θ as a “sensitivity factor”, representing the idiosyncratic response of your wheel and motor to a
change in the duty cycle (you will have a separate θ for your left and your right wheel, as your two motors will
differ in their sensitivities).

• βL,R - Represents a constant offset in velocity (in units of ticks/timestep). Similar to θ , β is dependent on many
physical phenomena, like static friction, so we will empirically determine it using the velocity vs. input data we
collect with the car. Note that you will also have a different β for your left and your right wheel. This β is also
not related to the current gain of the BJT in the motor circuit, βF .

Note that all mathematical models have their limitations, beyond which observations of the system in reality start
to deviate from the model. Our model only applies when we are near our operating point; if we stray too far from it,
the model no longer models the physical system very well because the physical system may be nonlinear or generally
different from our specific linear model in other regions. To illustrate this, consider when u[i] = 0: our model tells us
that the velocity should be equal to −β ! Clearly, this is wrong; when we don’t apply any input, the car is at rest, not
moving backwards. We thus need to keep these limitations in mind when using our model so that we remain near the
operating point in the linear region where our model is the most accurate.

Linear Least Squares
Before trying to control S1XT33N, we will first determine the system operating point: since your motors are not

identical, we need to find an operating velocity that both motors can reach, as our end goal is to make sure S1XT33N
can drive in a straight line. In order for the car to drive straight, the wheels must be moving at the same velocity.
However, the motors (and hence the wheels) have different achievable velocity ranges and sensitivities, so we need to
ensure we choose an operating velocity that is actually achievable by both wheels. A good choice of target velocity is
the midpoint of the overlapping range of the two motors’ velocity ranges, as it provides us the largest margin of error
on both sides of the operating point.

We will assume that velocity varies approximately linearly with applied u[i], so we will collect velocity data across
a range of values for u[i] and then perform a least-squares linear regression on a linear subset of the data (located
around your operating point) to find θ and β and get our model.

Linear Regression

The goal of regression is to fit a mathematical system model to a set of observed data points. When we say “fit,”
what we mean is we want to determine the values of the free model parameters (in our case, θ and β ) that allow the
model to best approximate the real system performance that we measured and stored in our data.

Recall our linear model:
vL[i] = θLuL[i]−βL

vR[i] = θRuR[i]−βR

Moving forward, we will drop the L and R subscripts to generalize our model equation, but just remember that
we have different values of v[i], u[i], θ , and β for the two different wheels, so we will have 2 models, one for each
wheel. We know v[i] and u[i]: v[i] is the measured velocity of the wheel (from the encoder data) and u[i] is the input
PWM value. Note that because v[i] is the measured velocity we obtained from our data collection, there will be some
perturbations/nonidealities that are introduced into the measurements; our model will not perfectly match what we
observe, only approximate it. Thus, since in our model, u[i] is multiplied by θ , while v[i] is the result, we can set up
the following ℓ equations for the ℓ measurements we took:

2 Lab Note 6 — System ID (v3.0)



EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Lab Note 6

θu[0]−β ≈ v[0]

θu[1]−β ≈ v[1]

...

θu[ℓ−1]−β ≈ v[ℓ−1]

Now, we can condense the above linear equations into a single matrix-vector equation of the form Ddata p⃗ ≈ s⃗ as
follows:

Ddata p⃗ ≈ s⃗
u[0] −1
u[1] −1
u[2] −1

...
...

u[ℓ−1] −1


[

θ

β

]
≈


v[0]
v[1]
v[2]

...
v[ℓ−1]


Here, we know u[i] and v[i], so the unknown values we need to solve for are the θ and β that make up the p⃗ vector.

Recall that the column space C(Ddata) of a matrix Ddata is the set of linear combinations of the columns of Ddata, and
the system Ddata p⃗ = s⃗ is solvable only if s⃗ (the velocity vector in this case) is in C(Ddata). However, we already know
that s⃗ doesn’t fit our model perfectly, and is only approximated by our model as shown in the equation above, so it’s
probably not in the column space. So how can we solve for p⃗ then?

Let’s examine this problem graphically. Consider a⃗1 and a⃗2 to be vectors in C(Ddata) (i.e. they lie in the C(Ddata)
plane). s⃗ is not in C(Ddata), so it does not lie in the plane. The plane C(Ddata) represents the set of velocity vectors the
wheel should reach, according to our model.

This is where the regression comes in. Rather than perfectly fitting the observed vector s⃗, we accept that we will
have some error, and we want to find parameters θ and β so that our the model outputs the closest possible vector to
s⃗ that is in C(Ddata) (i.e. minimize the error). This vector is the projection ŝ of s⃗ onto C(Ddata), and e⃗ = s⃗− ŝ is the
error between the model and the observation.

3 Lab Note 6 — System ID (v3.0)



EECS 16B Designing Information Devices and Systems II
Fall 2022 UC Berkeley Lab Note 6

ŝ is clearly in the column space of Ddata, so it must be equal to Ddata times some vector p⃗. We want to find the p⃗
that yields Ddata p⃗ = ŝ. p⃗ is the vector of θ and β in the matrix equation above, so what we’re really saying is we want
to find the θ and β values for our model that best approximate our observations.

Since e⃗ is perpendicular to C(Ddata), we know the dot product DT
data⃗e = 0. Since e⃗ = s⃗− ŝ and ŝ = Ddata p⃗, we have

DT
data⃗e = DT

data(⃗s−Ddata p⃗) = 0

and, solving for the parameter vector p⃗, we have:

DT
data⃗s−DT

data(Ddata p⃗) = 0

DT
data⃗s = DT

data(Ddata p⃗)

p⃗ = (DT
dataDdata)

−1DT
data⃗s

Having solved for p⃗, we now have our θ and β values for our model!

References
Chamberlain, Andrew. (2016) The Linear Algebra View of Least-Squares Regression. [online] Available at:
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f39b
[Accessed October 14, 2019].

Notes written by Mia Mirkovic (2019)
Edited by Steven Lu, Bozhi Yin (2021). Version 2.0, 2021.
Edited by Megan Zeng (2022). Version 3.0, 2022.

4 Lab Note 6 — System ID (v3.0)


