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Teaching Staff
Sayeef Salahuddin

•Professor@ Berkeley since Fall 2008
•Courses: EE 230C, EE 130/230A

Research group: 
http://leed.eecs.berkeley.edu/

Magnetic spins

Research:
Mostly known for Negative 
Capacitance Transistors and Spin 
RAM 

http://www.eecs.berkeley.edu/~sayeef/Site/Home.html
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Reading Material

For the first 10 classes we will closely follow

Electrical engineering: principles and applications 6th edition
Allan R Hambley

• See notes link in the website
• Also will be available through e-reserves 
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Announcement

lab section signups will open at 5pm today
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Capacitors and Inductors

• Outline
– Capacitor
– Inductor

• Reading
– Sections 3.1-3.6 (Hambley text)
– Slides
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Capacitors (Review)

• Two conductors (usually metal) separated by an insulator

• A capacitor stores charges (𝑞)

𝑞 = 𝐶𝑣

• The stored charge is proportional to the 
difference in potential (𝑣) across the metal 
plates. The proportionality constant is known 
as capacitance (𝐶)

• Charge is positive on the metal plate with 
high potential

• Complementary charge on two plates creates 
an electric field (𝜁) that points from positive to 
negative charges

Unit: Farad (coulomb/volt)
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Capacitors (Review)

𝑑

The potential difference between the two plates, held by 
the electric field, is equal to the product of the electric 
field and the distance of the conductors (thickness of the 
insulator)

𝑣 = 𝜁×𝑑

𝑞
𝐶
= 𝜁×𝑑

𝐶 =
𝜖
𝑑

Then

The ratio of charge and electric field in an insulator is called the permittivity (𝜖). Unit: Farad/meter

Therefore, 
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Current flow through a Capacitor

𝑑

If a current is flowing to the upper plate, 
electrons leave that plate resulting in a net 
positive charge. 

The positive charge generates an electric 
field that brings electrons to the bottom plate 
at the same rate electrons are leaving the 
upper plate. Thus current flow is maintained.

𝜁

Remember: Electrons flow in the opposite direction of current flow
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Current flow in a Capacitor

𝑖 = 𝐶
𝑑𝑣
𝑑𝑡

Current flow through a capacitor is proportional to the rate 
of change in potential difference of the plates

𝑣 𝑡 =
1
𝐶
:
!!

!
𝑖 𝑑𝑡 + 𝑣(𝑡")

Also, from the definition of current

𝑖 =
𝑑𝑞
𝑑𝑡

𝑞 𝑡 = :
!!

!
𝑖 𝑑𝑡 + 𝑞(𝑡")

Time Varying Voltage

Time Varying Charge
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Stored Energy in a Capacitor

• Power (𝑝) delivered to a circuit element is the product of the current and the voltage.

• Energy (𝑤) is the power integrated over time.

𝑝 𝑡 = 𝑣 𝑡 𝑖(𝑡)

𝑝 𝑡 = 𝑣 𝑡
𝐶𝑑𝑣 𝑡
𝑑𝑡

= 𝐶
𝑣 𝑡 𝑑𝑣 𝑡

𝑑𝑡

𝑝 𝑡 𝑑𝑡 = 𝐶𝑣 𝑡 𝑑𝑣 𝑡

• Capacitors store energy in the electric field
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Voltage, Current and Energy in a Capacitor
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Cause and Effect
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Series and Parallel Capacitors

𝑖 = 𝐶#$
𝑑𝑣
𝑑𝑡

= 𝐶#$
𝑑𝑣%
𝑑𝑡

+ 𝐶#$
𝑑𝑣%
𝑑𝑡

1
𝐶#$

=
1

𝑖/ 𝑑𝑣%𝑑𝑡

+
1

𝑖/ 𝑑𝑣&𝑑𝑡

Series: Parallel:

𝑖 = 𝑖! + 𝑖" + 𝑖# = 𝑐!
$%
$&
+ 𝑐"

$%
$&
+ 𝑐#

$%
$&
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Inductors

• Inductors store energy in the magnetic field
• Are made of current carrying coils wound around a magnetic core material (popular materials are 

various types of iron oxides – often called ferrites)
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Prof. Chang-Hasnain
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Capacitors in Series
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Capacitive Voltage Divider

Q: Suppose the voltage applied across a series combination 
of capacitors is changed by ∆v.  How will this affect the 
voltage across each individual capacitor?

21 vvv ∆+∆=∆

v+∆∆∆∆v

C1

C2

+

v2(t)+∆∆∆∆v2

–

+

v1+∆∆∆∆v1

–+
–

Note that no net charge can
can be introduced to this node.
Therefore, −∆Q1+∆Q2=0

Q1+∆∆∆∆Q1

-Q1−−−−∆∆∆∆Q1

Q2+∆∆∆∆Q2

−−−−Q2−−−−∆∆∆∆Q2

∆Q1=C1∆v1

∆Q2=C2∆v2

2211  vCvC ∆=∆⇒
v

CC

C
v ∆

+
=∆

21

1
2

Note: Capacitors in series have the same incremental 
charge.
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Symbol:

Units:  Henrys (Volts • second / Ampere)

Current in terms of voltage:

Note: iL must be a continuous function of time

Inductor

+
vL

–

iL

∫ +=

=

t

t

LL

LL

tidv
L

ti

dttv
L

di

0

)()(
1

)(

)(
1

0ττ

L

(typical range of values: µµµµH to 10 H)

Symbol:

Image source: Digikey

• Governed by Faraday’s law of electromagnetic induction which 
states that a time-varying magnetic flux linking a coil induces a 
voltage across the coil which is proportional to the rate of change in 
the current. This proportionality constant is the inductance

𝑣 𝑡 = 𝐿
𝑑𝑖
𝑑𝑡

Reciprocity says that a time-varying current flowing through a coil will create a time-varying magnetic flux 
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Inductors
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Current in an Inductor
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Remember the capacitors
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Cause and Effect
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Stored Energy in an Inductor
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Stored Energy

Consider an inductor having an initial current i(t0) = i0
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Inductors in Series and Parallel

Common
Current

Common
Voltage
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Capacitor

v cannot change instantaneously

i can change instantaneously

Do not short-circuit a charged
capacitor (-> infinite current!)

n cap.’s in series:

n cap.’s in parallel:

In steady state (not time-varying), 
a capacitor behaves like an open 
circuit.

Inductor

i cannot change instantaneously

v can change instantaneously

Do not open-circuit an inductor with 
current (-> infinite voltage!)

n ind.’s in series:

n ind.’s in parallel:

In steady state, an inductor 
behaves like a short circuit.

Summary
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Chapter 4

• OUTLINE
– First Order Circuits

• RC and RL Examples

• General Procedure

– RC and RL Circuits with General Sources
• Particular and complementary solutions

• Time constant

– Second Order Circuits
• The differential equation

• Particular and complementary solutions

• The natural frequency and the damping ratio

• Reading
– Chapter 4

Inductances in Series and Parallel
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Stored Energy

Consider an inductor having an initial current i(t0) = i0
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Inductors in Series and Parallel

Common
Current

Common
Voltage
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Capacitor

v cannot change instantaneously

i can change instantaneously

Do not short-circuit a charged
capacitor (-> infinite current!)

n cap.’s in series:

n cap.’s in parallel:

In steady state (not time-varying), 
a capacitor behaves like an open 
circuit.

Inductor

i cannot change instantaneously

v can change instantaneously

Do not open-circuit an inductor with 
current (-> infinite voltage!)

n ind.’s in series:

n ind.’s in parallel:

In steady state, an inductor 
behaves like a short circuit.

Summary
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Chapter 4

• OUTLINE
– First Order Circuits

• RC and RL Examples

• General Procedure

– RC and RL Circuits with General Sources
• Particular and complementary solutions

• Time constant

– Second Order Circuits
• The differential equation

• Particular and complementary solutions

• The natural frequency and the damping ratio

• Reading
– Chapter 4

Series: Common Current Parallel: Common Voltage
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Mutual Inductance
• Mutual inductance occurs when two windings are arranged so that they have a 

mutual flux linkage
• The change in current in one winding causes a voltage drop to be induced in the 

other

Transformers (adapters), motors, generators (electric cars)
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The Dot Convention
• If a current enters the dotted terminal of a coil, the reference polarity of the voltage 

induced in the other coil is positive at its dotted terminal.
• If a current leaves the dotted terminal of a coil, the reference polarity of the voltage 

induced in the other coil is negative at its dotted terminal.
• Total voltage induced in a coil is a summation of its own induced voltage and the 

mutually induced voltage
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Summary
Capacitors:
𝑖 = 𝐶
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• 𝑣 cannot charge instantaneously

• 𝑖 can charge instantaneously (do not 
short circuit a charged capacitor)

• N capacitors in series
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• N capacitors in parallel 𝐶#$ =C
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Inductors:
𝑣 = 𝐿
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• 𝑖 cannot charge instantaneously

• 𝑣 can charge instantaneously (do not 
open an inductor with current)

• N inductors in series
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• N inductors in parallel
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Announcement

lab section signups will open at 5pm today


