

EECS 16B

Designing Information Devices and Systems II Lecture 4

Prof. Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Transient Response

- Outline
- R-L-C Circuits
- Phasors
- Reading- Hambley text sections 4.5, 5.1,5.2slides

R-L-C circuits: Response in time

$$
v_{s}=R C \frac{d v_{c}}{d t}+v_{c}+L \frac{d i}{d t}
$$

$$
\Rightarrow v_{s}=R C \frac{d v_{c}}{d t}+v_{c}+L C \frac{d}{d t}\left(\frac{d v_{c}}{d t}\right)
$$

$$
\Rightarrow v_{s}=R C \frac{d v_{c}}{d t}+v_{c}+L C \frac{d^{2} v_{c}}{d t^{2}}
$$

$$
\Rightarrow \frac{d^{2} v_{c}}{d t^{2}}+\frac{d u_{c} / d t}{(L / R)}+\frac{v_{c}}{L c}=\frac{u_{s}}{L c}
$$

R-L-C circuits: Response in time

$$
\begin{array}{ll}
\frac{d^{2} v_{c}}{d t^{2}}+\frac{1}{(L / R)} \frac{d v_{c}}{d t}+\frac{1}{L C} v_{c}=\frac{v_{s}}{L C} & 2 \alpha=\frac{1}{L / R} \Rightarrow \alpha=\frac{R}{2 L} \\
\frac{d^{2} v_{c}}{d t^{2}}+2 \alpha \frac{d v_{c}}{d t}+\omega_{0}^{2} v_{c}=\frac{v_{s}}{L C} & \omega_{0}^{2}=\frac{1}{L C}
\end{array}
$$

Homogeneous solution

$$
\frac{d^{2} v_{c}}{d t^{2}}+2 \alpha \frac{d v_{c}}{d t}+\omega_{0}^{2} v_{c}=0
$$

$v_{s}(t)$

From previous discussions we have seen that an
 exponential solution works

$$
\begin{aligned}
& \text { Lets try: } v_{c}(t)=A e^{s t} \\
& A s^{2} e^{s t}+2 \alpha A s e^{s t}+w_{0}^{2} A e^{s t}=0 \\
& \Rightarrow s^{2}+2 \alpha s+w_{0}^{2}=0
\end{aligned}
$$

R-L-C circuits: Response in time

$$
\left.\begin{array}{l}
s^{2}+2 \alpha s+\omega_{0}^{2}=0 \\
s=\frac{-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega_{0}^{2}}}{2 \omega} \\
\Rightarrow s=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}
\end{array}\right\} \quad S_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}{ }^{2}}, \quad S_{2}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}{ }^{2}}
$$

$$
\left.\begin{array}{l}
v_{c}(t)=A_{1} e \\
\begin{array}{l}
\alpha>w_{0}
\end{array} \Rightarrow \text { both } s_{1} \text { and } s_{2} \text { are negative } \\
v_{c}(t)=A_{1} e^{-|a| t}+A_{2} e^{-|b| t}
\end{array}\right\} \begin{aligned}
& a=-\alpha+\sqrt{\alpha^{2}-w_{0}^{2}} \\
& b=-\alpha-\sqrt{\alpha^{2}-w_{0}^{2}}
\end{aligned}
$$

over damped system

$$
\alpha=\omega_{0} \quad a=b=-\alpha ; \quad v_{e}(t)=\left(A_{1}+A_{2}\right) e^{\alpha} \rightarrow \text { critically damped }
$$

R-L-C circuits: Response in time

$$
\begin{aligned}
& \alpha<\omega_{0}
\end{aligned}\left\{\begin{array}{l}
S_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} \\
S_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}} \\
\text { wader }
\end{array}\right.
$$

R-L-C circuits: Response in time

$$
\begin{aligned}
& \alpha=\frac{R}{2 L}=0 \\
& S_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}}=j B \quad=j \omega^{\omega_{0}}=j \omega_{0} \\
& S_{2}=-\alpha-\sqrt{\alpha_{0}^{2}-\omega_{1}^{2}}=-j B=-j \omega_{0}
\end{aligned}
$$

$$
v_{c}(t)=A_{1} e^{j \omega_{0} t}+A_{2} e^{-j \omega_{0} t}
$$

$$
\begin{aligned}
w_{0}= & \frac{1}{\sqrt{L C}} \\
\equiv & \text { resonance } \\
& \text { frezumey }
\end{aligned}
$$

Summary

- Overdamped - real unequal roots
- Critically damped - Real Equal roots
- Underdamped - Complex roots

R-L-C circuits: Response in time

Particular solution:

$$
\begin{aligned}
& \frac{d^{2} v_{c}}{d t^{2}}+\frac{1}{(L / R)} \frac{d v_{c}}{d t}+\frac{1}{L C} v_{c}=v_{s} \\
& \frac{d^{2} i}{d t^{2}}+\frac{1}{(L / R)} \frac{d i}{d t}+\frac{1}{L C} i=\frac{1}{L} \frac{d v_{s}}{d t} \\
& \text { Constant source: } v_{s}=V_{0} \rightarrow \text { partienlar solution is simply } \\
& \text { thx strady state solution }
\end{aligned}
$$

Sinusoidal voltages

T : Period

$$
\omega=\frac{2 \pi}{T}
$$

$$
\text { Degree } \rightarrow R: \operatorname{Deg} \times \frac{\pi}{180}
$$

Root Mean Square Values

$\omega=\frac{2 \pi}{T}$

Average Power over one period:

$$
\begin{gathered}
P=\frac{1}{T} \int_{0}^{T} \frac{v^{2}}{R} d t \\
P=\frac{\left[\sqrt{\frac{1}{T} \int_{0}^{T} v^{2} d t}\right]^{2}}{R}
\end{gathered}
$$

Comparing with conventional equation: $P=$ voltage ${ }^{\wedge} 2 / R$
A new quantity is defined for time-varying voltages known as the root-mean-square voltage

$$
v_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2} d t}
$$

Root Mean Square Value for Sinusoidal Voltage

How do we add arbitrary sinusoids?

$$
\begin{aligned}
& v(t)=10 \cos \omega t+5 \sin \omega t-5 \cos \left(\omega t-30^{0}\right) \\
& v(t)=10 \cos \omega t+5 \cos (\omega t-90)-5 \cos \left(\omega t-30^{0}\right)
\end{aligned}
$$

Remember? $\quad \cos (a+b)=\cos a \cos b-\sin a \sin b$
Lets do it it differently

$$
\begin{gathered}
e^{j \theta}=\cos \theta+j \sin \theta \\
e^{-j \theta}=\cos \theta-j \sin \theta
\end{gathered}
$$

Then

$$
v(t)=V \cos \left(\omega t+30^{\circ}\right)
$$

How do we add arbitrary sinusoids?

$$
\begin{aligned}
& v(t)=10 \cos \omega \mathrm{t}+5 \cos \left(\omega t-90^{0}\right)-5 \cos \left(\omega t-30^{\circ}\right) \\
& =\frac{1}{2} e^{j \omega t}[10]+\frac{1}{2} e^{j\left(\omega t-90^{0}\right)}[5]-\frac{1}{2} e^{j\left(\omega t-30^{0}\right)}[5] \\
& +\frac{1}{2} e^{-j \omega t}[10]+\frac{1}{2} e^{-j\left(\omega t-90^{0}\right)}[5]-\frac{1}{2} e^{-j\left(\omega t-30^{0}\right)} \\
& =\frac{1}{2} e^{j \omega t}\left[10+5 e^{-j 90}-5 e^{-j 30}\right]+\frac{1}{2} e^{-j \omega t}\left[10+5 e^{+j 90}-5 e^{+j 30}\right] \\
& =\frac{1}{2} e^{j \omega t}[10+5 \cos 90-j 5 \sin 90-5 \cos 30+j 5 \sin 30]+c c \\
& =\frac{1}{2} e^{j \omega t}\left[10+0-j 5-5 \frac{\sqrt{3}}{2}+\frac{j 5}{2}\right]+c c \\
& =\frac{1}{2} e^{j \omega t} \frac{A^{\rho^{\theta} \theta}}{[5.66-j 2.5]}+c c \\
& =\frac{1}{2} 6.18 e^{j\left(\omega t-23^{0}\right)}+c c \\
& =6.18 \cos \left(\omega t-23^{0}\right) \\
& \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
& \sin \theta=\frac{1}{2}\left(e^{j \theta}-e^{-j \theta}\right) \\
& \left.\begin{array}{cc}
\text { muitiply } \\
\left\{\begin{array}{l}
\left\{\begin{array}{l}
A e^{-j \theta}=5.66-j 2.5 \\
A e^{j \theta}=5.66+j 2.5
\end{array}\right. \\
A^{2}=5.66^{2}-j^{2} 2.5^{2}
\end{array}\right. \\
A^{2}=5.66^{2}+2.5^{2}
\end{array}\right\} \\
& \cos \theta=5.66 / 6.18 ; \sin \theta=2.5 / 6.18 \\
& \tan \theta=\frac{2.5}{5.66}=0.44
\end{aligned}
$$

Some Observations

$$
\begin{aligned}
v(t) & =\frac{1}{2} e^{j \omega t}[5.66-j 2.5]+c c \\
& =\underbrace{\frac{1}{2} 6.18 e^{j\left(\omega t-23^{0}\right)}}+\frac{1}{2} 6.18 e^{-j\left(\omega t-23^{0}\right)} \\
& =\frac{1}{2} 6.18\left[\cos \left(\omega \mathrm{t}-23^{0}\right)+j \sin \left(\omega t^{2}-23^{0}\right)_{\uparrow} \cos \left(\omega t-23^{0}\right)-j \sin \left(\omega t-23^{0}\right)\right]=6 \cdot 18 \cos \left(\omega t-23^{6}\right) \\
& =\operatorname{Real}[\underbrace{6.18 e^{j\left(\omega t-23^{0}\right)}}_{\text {Phasors }}]
\end{aligned}
$$

