EECS 16B
 Designing Information Devices and Systems II Lecture 5
 Prof. Sayeef Salahuddin
 Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Transient Response

- Outline
- Phasors
- Complex Impedances
- Solution of circuits using complex impedances
- Reading- Hambley text sections 5.2, 5.3,5.4, 5.6, 5.5, slides

Recap: Sinusoidal voltages

$$
\begin{gathered}
c(t)=V \cos (\omega t) \\
\hline 0 \\
T: \text { Period } \\
\omega=\frac{2 \pi}{T}
\end{gathered}
$$

$$
v(t)=V \cos \left(\omega t-60^{\circ}\right)
$$

Recap: How do we add arbitrary sinusoids?

$$
\begin{aligned}
& v(t)=10 \cos \omega t+5 \sin \omega t-5 \cos \left(\omega t-30^{\circ}\right) \\
& v(t)=10 \cos \omega t+5 \cos (\omega t-90)-5 \cos \left(\omega t-30^{\circ}\right)
\end{aligned}
$$

Remember? $\quad \cos (a+b)=\cos a \cos b-\sin a \sin b$
Lets do it it differently $\quad e^{j \theta}=\cos \theta+j \sin \theta$

$$
e^{-j \theta}=\cos \theta-j \sin \theta
$$

Then

$$
v(t)=V \cos \left(\omega t-60^{\circ}\right)
$$

$$
\begin{aligned}
& \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
& \sin \theta=\frac{1}{2}\left(e^{j \theta}-e^{-j \theta}\right)
\end{aligned}
$$

$$
v(t)=V \cos \left(\omega t+30^{\circ}\right)
$$

Recap: How do we add arbitrary sinusoids?

$$
\begin{aligned}
& v(t)=10 \cos \omega t+5 \cos \left(\omega t-90^{0}\right)-5 \cos \left(\omega t-30^{0}\right) \\
& =\frac{1}{2} e^{j \omega t}[10]+\frac{1}{2} e^{j\left(\omega t-90^{0}\right)}[5]-\frac{1}{2} e^{j\left(\omega t-30^{0}\right)}[5] \\
& \\
& \quad+\frac{1}{2} e^{-j \omega t}[10]+\frac{1}{2} e^{-j\left(\omega t-90^{0}\right)}[5]-\frac{1}{2} e^{-j\left(\omega t-30^{0}\right)} \\
& = \\
& \frac{1}{2} e^{j \omega t}\left[10+5 e^{-j 90}-5 e^{-j 30}\right]+\frac{1}{2} e^{-j \omega t}\left[10+5 e^{+j 90}-5 e^{+j 30}\right] \\
& =\frac{1}{2} e^{j \omega t}[10+5 \cos 90-j 5 \sin 90-5 \cos 30+j 5 \sin 30]+c c \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
& \sin \theta=\frac{1}{2}\left(e^{j \theta}-e^{-j \theta}\right)
\end{aligned}
$$

$$
\begin{gathered}
A e^{-j \theta}=5.66-j 2.5 \\
A e^{j \theta}=5.66+j 2.5 \\
A^{2}=5.66^{2}-j^{2} 2.5^{2} \\
A^{2}=5.66^{2}+2.5^{2} \\
A=\sqrt{5.66^{2}+2.5^{2}}=6.18 \\
\cos \theta=5.66 / 6.18 ; \sin \theta=2.5 / 6.18 \\
\tan \theta=\frac{2.5}{5.66}=0.44 \\
\theta=0.41=23^{0}
\end{gathered}
$$

Recap: Some Observations

$$
\begin{aligned}
& v(t)=\frac{1}{2} e^{j \omega t}[5.66-j 2.5]+c c \\
&=\frac{1}{2} 6.18 e^{j\left(\omega t-23^{0}\right)}+\frac{1}{2} 6.18 e^{-j\left(\omega t-23^{0}\right)} \\
&=\frac{1}{2} 6.18\left[\cos \left(\omega \mathrm{t}-23^{0}\right)+j \sin \left(\omega t-23^{0}\right) \cos \left(\omega t-23^{0}\right)-j \sin \left(\omega t-23^{0}\right)\right] \\
&=\operatorname{Real}\left[6.18 e^{j\left(\omega t-23^{0}\right)}\right] \\
& \text { Phasors }
\end{aligned}
$$

In short hand, it is represented as $6.18 \angle-23^{\circ}$

Some Observations

$$
\begin{aligned}
& \mathrm{A}(\mathrm{t})=5 \cos (\omega t)=\operatorname{Real}\left[5 e^{j(\omega t)}\right] \\
& B(t)=5 \cos \left(\omega t-90^{0}\right)=\operatorname{Real}\left[5 e^{j\left(\omega t-90^{0}\right)}\right] \\
& C(t)=5 \cos \left(\omega t+90^{0}\right)=\operatorname{Real}\left[5 e^{j\left(\omega t+90^{0}\right)}\right]
\end{aligned}
$$

At any given time $t, B(t)$ is trailing or lagging behind $A(t)$ by 90° while $C(t)$ is leading $A(t)$ by the same amount

Let us now look at the phasors at $t=0$

$$
\begin{aligned}
5 e^{j\left(\omega t-90^{0}\right)} & =5 \\
5 e^{j\left(\omega t-90^{\circ}\right)} & =5\left(\cos 90^{0}-j \sin 90^{0}\right)=-j 5 \\
5 e^{j\left(\omega t+90^{0}\right)} & =5\left(\cos 90^{\circ}+j \sin 90^{\circ}\right)=+j 5
\end{aligned}
$$

$v(t)=V \cos \left(\omega t-90^{\circ}\right)$

$$
v(t)=V \cos \left(\omega t+90^{\circ}\right)
$$

Therefore $+j$ or $-j$ signifies signals having 90° phase lead or lag respectively.

Some Observations

$+j$ or $-j$ signifies signals having 90° phase lead or lag respectively.

$$
\begin{aligned}
5 e^{j\left(\omega t-90^{\circ}\right)} & =5 \\
5 e^{j\left(\omega t-90^{\circ}\right)} & =5\left(\cos 90^{\circ}-j \sin 90^{\circ}\right)=-j 5 \\
5 e^{j\left(\omega t+90^{\circ}\right)} & =5\left(\cos 90^{\circ}+j \sin 90^{\circ}\right)=+j 5
\end{aligned}
$$

Some Observations

$$
\begin{aligned}
v(t) & =10 \cos \omega t+5 \cos \left(\omega t-90^{\circ}\right)-5 \cos \left(\omega t-30^{\circ}\right) \\
& =10+5 \angle-90^{\circ}-5 \angle-30^{\circ} \quad \text { In phasor notation } \\
& =6.18 \angle-23^{\circ}
\end{aligned}
$$

Phasors are like vectors where the phase angle denotes the angle between coordinate axes with j representing 90°

Some Observatons

What is $\frac{1}{\angle \theta}$?

Complex Impedances

Inductance:

Say a sinusoidal current is flowing in a circuit with inductance

$$
\begin{gathered}
i(t)=I_{0} \sin (\omega t)=I_{0} \cos \left(\omega t-90^{\circ}\right) \\
v_{L}(t)=L \frac{d i}{d t}=\omega L I_{0} \cos \omega t
\end{gathered}
$$

Therefore, the current in an inductor lags the voltage by 90°
In the phasor notation

$$
\begin{aligned}
\boldsymbol{V} & =\omega L I_{0} \\
\boldsymbol{I} & =I_{0} \angle-90^{\circ}
\end{aligned}
$$

Then, inductive impedance

$$
\boldsymbol{Z}_{L}=\frac{\boldsymbol{V}}{\boldsymbol{I}}=\frac{\omega L}{\angle-90^{0}}=\frac{\omega L}{-j}=j \omega L
$$

We could have obtained the same result working directly with exponentials

$$
\begin{aligned}
\boldsymbol{V} & =L \frac{d}{d t}\left[I_{0} e^{j\left(\omega t-90^{0}\right)}\right] \\
\boldsymbol{V} & =L j \omega\left[I_{0} e^{j\left(\omega t-90^{0}\right)}\right] \\
\boldsymbol{V} & =j \omega L I_{0} \angle-90^{0} \\
\boldsymbol{V} & =j \omega L \boldsymbol{I}
\end{aligned}
$$

Complex Impedances

Capacitance:

Complex Impedances

- AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm's law:

$$
V=I Z
$$

- Impedance depends on the frequency ω.
- Impedance is a complex number.
- Impedance allows us to use the same solution techniques for AC steady state as

Circuit Solution with sinusoidal sources

Circuit Solution with sinusoidal sources

Power in AC Circuits

Power in AC Circuits

