

EECS 16B Designing Information Devices and Systems II

Lecture 6

Prof. Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Transient Response

- Outline
 - Power in the AC circuits
 - Transfer Function and Filters

• Reading- Hambley text sections 5.6, 6.1, 6.2, slides

Recap: Phasors and sinusoidal steady state

Phasors define phase relationships at an instant of time, i.e., with respect to ωt

Recap: Solving circuits with R, L and C

Recap: Solving circuits with R, L and C

Recap: Solving circuits with R, L and C

Recap: Power in AC Circuits

Purely resistive Circuit

$$v(t) = V_m cos\omega t$$

$$i(t) = I_m cos \omega t$$

$$P_{avg} = \frac{1}{T} \int_0^T dt \ v(t) i(t) = \frac{V_m I_m}{T} \int_0^T dt \cos^2 \omega t = \frac{V_m I_m}{T} \times \frac{T}{2}$$

$$P_{avg} = \frac{V_m I_m}{2}$$

Power in AC Circuits

Purely Inductive Circuit

$$v(t) = V_m cos\omega t$$

$$i(t) = I_m \cos(\omega t - 90^\circ)$$

$$P_{avg} = \frac{1}{T} \int_0^T dt \ v(t)i(t) = \frac{V_m I_m}{T} \int_0^T dt \ cos\omega t sin\omega t$$
$$= \frac{V_m I_m}{2T} \int_0^T dt \ sin2\omega t$$

Purely Capacitive Circuit

$$v(t) = V_m \cos(\omega t - 90^\circ)$$

$$i(t) = I_m \cos(\omega t)$$

$$P_{avg} = \frac{1}{T} \int_0^T dt \ v(t)i(t) = \frac{V_m I_m}{T} \int_0^T dt \ cos\omega t sin\omega t$$

$$= \frac{V_m I_m}{2T} \int_0^T dt \sin 2\omega t = 0$$

Power in AC Circuits

General case

Power in AC Circuits

General case

Power in AC Circuits: Power Triangle

Power in AC Circuits: Power Triangle

Power in AC Circuits: Maximum Power <u>Transfer</u>

Concept of Transfer Function

Two port Filter Network or more generally Two port network

Concept of Transfer Function

H(f) is a complex number

A simple RC Circuit

A simple RC Circuit

First Order low pass filter

Decibels