

EECS 16B Designing Information Devices and Systems II

Lecture 7

Prof. Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Transient Response

- Outline
 - Power in the AC circuits
 - Transfer Function and Filters

• Reading- Hambley text sections 5.6, 6.1, 6.2, 6.3 slides

Maximum Power Transfer

Concept of Transfer Function

Two port Filter Network or more generally Two port network

Concept of Transfer Function

H(f) is a complex number

A simple RC Circuit

A simple RC Circuit

First Order low pass filter

Decibels

Decibel:

$$|H(f)|_{dB} = 20\log_{10}|H(f)|$$

Table 6.2 Transfer-Function Magnitudes and Their Decibel Equivalents

<i>H</i> (<i>f</i>)	$ H(f) _{\mathrm{dB}}$
100	40
10	20
2	6
$\sqrt{2}$	3
1	0
$1/\sqrt{2}$	-3
1/2	-6
0.1	-20
0.01	-40

Copyright ©2018 Pearson Education, All Rights Reserved.

Cascaded Networks

Logarithmic Frequency Scales

- A decade is a range of frequencies for which the ratio of the highest frequency to the lowest is 10
- An Octave is a range of frequencies for which the ratio of the highest frequency to the lowest is 2

Logarithmic Frequency Scales

Bode Plots

A **Bode** plot is a plot of the decibel magnitude of a newtwork function versus log-scale frequency

Bode Plots

Phase Plot