

EECS 16B Designing Information Devices and Systems II Lecture 8

Prof. Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Transient Response

- Outline
 - High Pass Filters
 - Series and Parallel Resonance
 - Amplifiers and Devices
- Reading- Hambley text sections 6.4, 6.5, 6.6, 6.7, slides

Recap: Concept of Transfer Function

H(f) is a complex number

EECS 16B Spring 2022

Lecture 8, Slide 3

Recap:First order low pass filter

First order High Pass Filter

EECS 16B Spring 2022

Lecture 8, Slide 5

First order High Pass Filter

Instructor: Prof. Salahuddin

Lecture 8, Slide 6

Low Pass and High Pass Filters with Inductors

Resonant Circuits

Series Resonance

EECS 16B Spring 2022

Lecture 8, Slide 8

Recap: R-L-C circuits: Response in time

 $2\alpha = \frac{1}{L/R} \Longrightarrow \alpha = \frac{R}{2L}$ $w_0^2 = \frac{L}{LC}$

$$\frac{d^2 v_c}{dt^2} + \frac{1}{(L/R)} \frac{dv_c}{dt} + \frac{1}{LC} v_c = \frac{v_s}{LC}$$
$$\frac{d^2 v_c}{dt^2} + 2\alpha \frac{dv_c}{dt} + \omega_0^2 v_c = \frac{v_s}{LC}$$

Homogeneous solution

$$\frac{d^2 v_c}{dt^2} + 2\alpha \frac{dv_c}{dt} + \omega_0^2 v_c = 0$$

From previous discussions we have seen that an exponential solution works

Lets try:
$$v_c(t) = Ae^{st}$$

 $As^2 e^{st} + 2e As e^{st} + w_0^2 Ae^{st} = 0$
 $= 7 [s^2 + 2As + w_0^2 = 0]$

TC

EECS 16B Spring 2022

Series Resonance

$$Z = R + j\omega L - \frac{j}{\omega C}$$

what happens at $w = wo$?

$$z = R + j w L \left[1 - \frac{1}{w^{2}LC} \right]$$

$$= R + j w L \left[1 - \frac{w_{0}^{2}}{w^{2}LC} \right] = R \left[w = w_{0} \right]$$

At resonance, all reactive impedances sum up to zero

Series Resonance

EECS 16B Spring 2022

Lecture 8, Slide 12

Series Resonance

Series Resonance Bandpass Filter

Half-power frequencies are defined as the frequencies where the magnitude of the transfer function has fallen by a factor of $\frac{1}{\sqrt{2}} = 0.707$

It can be shown that

$$B = f_H - f_L = \frac{f_0}{Q_s}$$

EECS 16B Spring 2022

Lecture 8, Slide 14

Parallel Resonance

Active Devices

- Active devices are made of semiconductors
- Semi-conductors are materials whose resistance is in between a metal and insulator Half
- More interestingly, one is able to change the resistance of the semiconductor materials by using external control such as voltage or current

EECS 16B Spring 2022

Lecture 8, Slide 16