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* Active devices are made of semiconductors
 Semi-conductors are materials whose resistance is in between a metal and insulator

Half

» More interestingly, one is able to change the resistance of the semiconductor materials by using external
control such as voltage or current
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Semiconductors

« Semiconductors are usually made of group IV elements- atoms that contain, on average, four valence electrons

» Most Common semiconductor used in electronic devices is Silicon
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Crystal Structure of Si

Often known as the diamond lattice

) 100

Transmission Electron Microscopy
Image of Si taken at Lawrence
> Berkeley National Laboratorys

5.43 A’
(100) plane
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Crystal Structure of Si

Each atom has 4 nearest neighbors

Si(14)=1872822P%3823P2 |
|

4 valence electrons

Each atom shares 2 electrons
with 4 nearest neighbors to form
< > a covalent bond

EECS 16B Spring 2022 Lecture 9, Slide 6 Instructor: Prof.



The Bond Model

Each atom shares 2 electrons with 4 nearest neighbors to form a covalent bond

At T=0K, all bonds are satisfied, there are no free carriers, no current flows,
looks like an insulator
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Intrinsic Si: The Bond Model:
Electrons

At finite temperature, an electron may gain enough energy to break the covalent bond,
become free and move around.
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Energy Band Model
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Electrons around nucleus

* In 1913 Niels Bohr proposed an atomic model
that assumes electrons are orbiting around a
positively charged nucleus in specific shells

It was known from John Herschel’s experiment in
(1826) that heated gas emits a unique combination

of colors
hv
X e NUCLCUS
) ™.
Hydrogen / N _—
i ( _
Helium N Npei

* When heated electrons can absorb the energy and
go from shell 1 to 2. When cooling down, it comes
down to 1, emitting the specific energy difference
between 2 and 1 giving a specific color of light.



Energy Levels and Formation of a Molecule

Anti-Bonding Level

Bonding Level

Discrete energy levels in an atom When energy levels of two atoms
interact, they create one bonding

and one anti-bonding level
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Energy Bands

In a solid as many atoms are brought close to each other they
create many many bonding and anti-bonding levels

Energy Bands
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Energy Bands

onduction band
Empty States 4

Energy States where no
electrons can stay: called
Band Gap

Filled States

Energy

Valence band
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Energy Bands

Conduction band

Energy

Band Gap

o
Valence Band
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Probability of an electron being free

A
Conduction band l
o
>
>
o Band Gap
L
o
Valence Band

Probability of an electron being able to find itself
in the conduction band becomes exponentially
smaller with increasing bandgap
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Semiconductors, Insulators and
Conductors

E E E
conduction
band
forbidden band conduction conduction band
band
electron C ,\m
distribution \\\\\
N

A valence band

.

valence

=D =

Insulator Conductor Semiconductor

v’ Conductors have half filled bands
v’ Semiconductors have lower energy gap compared to insulators and can be doped
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Conduction Band

Donor energy level, E,|

o
Valence Band
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] 1\ Vv
Boron Carbon
(B) (C)
Aluminum Silicon Phosphorous
(Al) (Si) (P)
Galium Germanium Arsenic
(Al) (Ge) (As)




Doping

Conduction Band

Energy

Acceptor energy level, E_

o
Valence Band
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A convention about energy bands

Conduction Band

Energy

Acceptor energy level, E_

Only the edge of the bands are
shown where the difference between
the two edges is the bandgap
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N and P type Materials, Junctions and Devices

R n-type material p-type material
EC | EC

>

> positive

o

= E, E, — charges left
behind by
electrns

*Blue color indicates electrons
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Combining N and P materials
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N and P type Materials, Junctions and Devices

Qualitative Picture of a Junction Formation
« When a n and p are put together,

4 they form a p-n junction diode
Symbol:

p-side > n-side

Energy

» Electron densities align in energy
so that there is no difference in
concentration

« Technically what aligns is the
energy level where probability of
finding an electron is %z [Jto be
discussed in more details in
EE130

EECS 16B Spring 2022 Lecture 9, Slide 22 Instructor: Prof.



What does a voltage do?

Qualitative Picture of a Junction Formation

p-side n-side

Energy

Negative terminal of a battery
brings electrons and thereby
increases energy.
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N and P type Materials, Junctions and Devices

& & i
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I-V of a PN junction Diode
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Metal-Oxide-Semiconductor Field Effect
Transistor (MOSFET)

source (V) Gate (V;) drain (V) N N

®

ox
oxide COX

e

« +o0r—inthe nameofnorp
type material indicates extent
of doping. N+ means doped

Si

heavily to n type. P-type semiconductor in the middle
« In common MOSEET source with little to no electrons on the
and drain voltages are conduction band acts like an insulator

interchangeable
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MOSFET
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MOSFET

<
®

ox

Si
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At large gate voltages, one
reaches close to maximum
charge density achievable in Si.
So rate of change in increase in
electron density with gate
voltage slows down
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MOSFETs

logl
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NFET vs pFET

nFET oFET

Cox OXIde

. e
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NFET vs pFET

OFET
‘metal —_—
oxide C,, — — — —
N
VG
COX J-
CSi
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NFET vs pFET

PFET NFET G

* nFET, V4 and V_ are positive
* pFET, V4 and V. are negative
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FET as an analog amplifier

When V <V_ -
Ip = Aek—TG' Small change in Vg Changes | exponentially
When V _ >VT
C) Ip = C(V;—Vr)? Small change in V¢ changes | quadratically

Overall, Large changes in the Drain current can be achieved by changing Gate Voltage
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FET in digital logic

Supply=1V

4 5 R

Q s

Ground=0V

Supply=1V

%R
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n

Ground=0V

out

logl,

When VGS is High, RSD is low
When VGS is Low, RSD is High



FET in digital logic

Supply=1V

éR

out

éRSD $ R

Ground=0V
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Supply=1V

s R

When Rgp < Ry; RsoR _ Rsp 0
Rsp + R, R;
RspR;,
V_, When Rsp > Ry; Ry + R, R,

é Parallel of RSD and RL

Ground=0V

RspR,,
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FET in digital logic

Supply=1V Supply=1V

$ ¥ ¢ R

out

out

é 0 When RSD < RL L. e.,VGS is high é RL
0 When Rsp > R;; when Vi is low
Vou = R0~ "
Ry
Vout = mVsupply
Ground=0V Ground=0V

= Vsuppiy tf we design R K Ry,
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FET in digital logic

GS

Supply
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CMOS

Supply=1V

$ R

_|

Q s

Ground=0V

Supply=1V

Ground=0V
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T T
Vin=1V

Vg for nFET is HIGH!| Ry is LOW

Vs for pFET is LOWLI Ry, is high

Vin=0 V
Vg for nFET is LOW | Ry, is HIGH

Vs for pFET is HIGH NEGATIVET Ry, is LOW



