

EECS 16B Designing Information Devices and Systems II Lecture 10

Prof. Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Devices

- Outline
 - Amplifiers and Devices
 - Vector Differential Equations

Reading-slides

EECS 16B Spring 2022 Lecture 10, Slide 2 Instructor: Prof. Salahuddir

Recap: Active Devices

- Active devices are made of semiconductors
- Semi-conductors are materials whose resistance is in between a metal and insulator

Half

 More interestingly, one is able to change the resistance of the semiconductor materials by using external control such as voltage or current

EECS 16B Spring 2022 Lecture 10, Slide 3 Instructor: Prof. Salahuddin

Metal-Oxide-Semiconductor Field Effect <u>Transistor (MOSFET)</u>

- + or in the name of n or p type material indicates extent of doping. N+ means doped heavily to n type.
- In common MOSFET source and drain voltages are interchangeable

P-type semiconductor in the middle with little to no electrons on the conduction band acts like an insulator

EECS 16B Spring 2022 Lecture 10, Slide 4 Instructor: Prof. Salahuddin

Recap: Capacitors (Review)

EECS 16B Spring 2022 Lecture 10, Slide 5 Instructor: Prof. Salahuddir

MOSFET

EECS 16B Spring 2022 Lecture 10, Slide 6 Instructor: Prof. Salahuddin

MOSFET

EECS 16B Spring 2022 Lecture 10, Slide 7 Instructor: Prof. Salahuddir

MOSFETs

- C is the series combination of Cox and Csi
- $R = I_{DS}/V_{DS}$

nFET vs pFET

nFET vs pFET

EECS 16B Spring 2022 Lecture 10, Slide 10 Instructor: Prof. Salahuddin

nFET vs pFET

- nFET, V_{GS} and V_{T} are positive
- pFET, V_{GS} and V_{T} are negative

FET as an analog amplifier

When
$$V_{GS} < V_T$$

$$I_D = Ae^{\frac{BV_{GS}}{kT}}$$

Small change in V_{GS} changes I_{D} exponentially

$$I_D = K(V_{GS} - V_T)^2$$

Small change in V_{GS} changes I_D quadratically

Overall, Large changes in the Drain current can be achieved by changing Gate Voltage

The parameter that is used to quantify the amplification is called **Transconductance** $g_m = \frac{dI_D}{dV_{GS}}$

When V_{GS} is High, R_{SD} is low When V_{GS} is Low, R_{SD} is High

EECS 16B Spring 2022 Lecture 10, Slide 13 Instructor: Prof. Salahuddir

 $\approx V_{supply} \ if \ we \ design \ R \ll R_L$

EECS 16B Spring 2022 Lecture 10, Slide 16 Instructor: Prof. Salahuddin

CMOS

Vin=1V

 V_{GS} for nFET is HIGH \rightarrow R_{SD} is LOW V_{GS} for pFET is LOW \rightarrow R_{SD} is high

Vin=0 V

 V_{GS} for nFET is LOW \rightarrow R_{SD} is HIGH

 V_{GS} for pFET is HIGH **NEGATIVE** \rightarrow R_{SD} is LOW

Vector Differential Equations

$$V_1 = I_2 R_2 + V_2 = R_2 C_2 \frac{dV_2}{dt} + V_2$$
$$\frac{dV_2}{dt} = \frac{1}{R_2 C_2} V_1 - \frac{1}{R_2 C_2} V_2$$

$$\frac{dV_1}{dt} = -\left(\frac{1}{R_2C_1} + \frac{1}{R_1C_1}\right)V_1 + \frac{1}{R_2C_1}V_2 + \frac{1}{R_1C_1}V_s$$

$$\frac{dV_1}{dt} = -\frac{1 + \frac{R_2}{R_1}}{R_2C_1}V_1 + \frac{1}{R_2C_1}V_2 + \frac{1}{R_1C_1}V_s$$

$$\frac{dV_2}{dt} = \frac{1}{R_2C_2}V_2 - \frac{1}{R_2C_2}V_2$$

$$\frac{dV_1}{dt} = -\left(\frac{1}{R_2C_1} + \frac{1}{R_2C_1}\right)V_1 + \frac{1}{R_2C_1}V_2 + \frac{1}{R_$$

$$\frac{dV_1}{dt} = -\frac{1 + \frac{R_2}{R_1}}{R_2 C_1} V_1 + \frac{1}{R_2 C_1} V_2 + \frac{1}{R_1 C_1} V_S$$

$$\frac{dV_1}{dt} = -\left(\frac{1}{R_2 C_1} + \frac{1}{R_1 C_1}\right) V_1 + \frac{1}{R_2 C_1} V_2 + \frac{1}{R_1 C_1} V_S$$

Vector Differential Equations

$$\frac{dV_1}{dt} = -\left(\frac{1}{R_2C_1} + \frac{1}{R_1C_1}\right)V_1 + \frac{1}{R_2C_1}V_2 + \frac{1}{R_1C_1}V_S$$

$$\frac{dV_2}{dt} = \frac{1}{R_2C_2}V_1 - \frac{1}{R_2C_2}V_2$$

$$\frac{d}{dt} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} -(\frac{1}{R_2 C_1} + \frac{1}{R_1 C_1}) & \frac{1}{R_2 C_1} \\ \frac{1}{R_2 C_2} & \frac{1}{R_2 C_2} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{R_1 C_1} V_s \\ 0 \end{bmatrix}$$

EECS 16B Spring 2022 Lecture 10, Slide 19 Instructor: Prof. Salahuddin