

EECS 16B

Designing Information Devices and Systems II Lecture 10

Prof. Sayeef Salahuddin

Department of Electrical Engineering and Computer Sciences, UC Berkeley, sayeef@eecs.berkeley.edu

Devices

- Outline
- Amplifiers and Devices
- Vector Differential Equations
- Reading-slides

Recap: Active Devices

- Active devices are made of semiconductors
- Semi-conductors are materials whose resistance is in between a metal and insulator Half
- More interestingly, one is able to change the resistance of the semiconductor materials by using external control such as voltage or current

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

- + or - in the name of n or p type material indicates extent of doping. $\mathrm{N}+$ means doped heavily to n type.
- In common MOSFET source and drain voltages are interchangeable

P-type semiconductor in the middle with little to no electrons on the conduction band acts like an insulator

Recap: Capacitors (Review)

MOSFET

MOSFET

MOSFETs

- C is the series combination of Cox and Csi
- $R=I_{D S} / V_{D S}$

nFET vs pFET

nFET vs pFET

nFET vs pFET

- $n F E T, \mathrm{~V}_{\mathrm{GS}}$ and V_{T} are positive
- $\mathrm{pFET}, \mathrm{V}_{\mathrm{GS}}$ and V_{T} are negative

FET as an analog amplifier

Overall, Large changes in the Drain current can be achieved by changing Gate Voltage
The parameter that is used to quantify the amplification is called Transconductance $g_{m}=\frac{d I_{D}}{d V_{G S}}$

FET in digital logic

CMOS

Vin $=0 \mathrm{~V}$
$V_{G S}$ for $n F E T$ is LOW $\rightarrow R_{S D}$ is HIGH
$V_{G S}$ for $p F E T$ is HIGH NEGATIVE $\rightarrow R_{S D}$ is LOW

Vector Differential Equations

$$
\begin{gathered}
\text { Vs } \\
\frac{d V_{1}}{d t}=-\left(\frac{1}{R_{2} C_{1}}+\frac{1}{R_{1} C_{1}}\right) V_{1}+\frac{1}{R_{2} C_{1}} V_{2}+\frac{1}{R_{1} C_{1}} V_{s} \\
\frac{d V_{2}}{d t}=\frac{1}{R_{2} C_{2}} V_{1}-\frac{1}{R_{2} C_{2}} V_{2} \\
\frac{d V_{2}}{d t}=\frac{1}{R_{2} C_{2}} V_{2}-\frac{1}{R_{2} C_{2}} V_{2}
\end{gathered} \left\lvert\, \begin{aligned}
& V_{s}-V_{1}=I R_{1} \quad ; I=I_{1}+I_{2}=C_{1} \frac{d V_{1}}{d t}+C_{2} \frac{d V_{2}}{d t} \\
& V_{s}-V_{1}=\left(C_{1} \frac{d V_{1}}{d t}+C_{2} \frac{d V_{2}}{d t}\right) R_{1} \\
& R_{2}\left(V_{s}-V_{1}\right)=\left(R_{2} C_{1} \frac{d V_{1}}{d t}+R_{2} C_{2} \frac{d V_{2}}{d t}\right) R_{1} \\
& \frac{d V_{1}}{d t}=-\frac{1+\frac{R_{2}}{R_{1}}}{R_{2} C_{1}} V_{1}+\frac{1}{R_{2} C_{1}} V_{2}+\frac{1}{R_{1} C_{1}} V_{s} \\
& \frac{d V_{1}}{d t}=-\left(\frac{1}{R_{2} C_{1}}+\frac{1}{R_{1} C_{1}}\right) V_{1}+\frac{1}{R_{2} C_{1}} V_{2}+\frac{1}{R_{1} C_{1}} V_{s}
\end{aligned}\right.
$$

Vector Differential Equations

$$
\begin{gathered}
\frac{d V_{1}}{d t}=-\left(\frac{1}{R_{2} C_{1}}+\frac{1}{R_{1} C_{1}}\right) V_{1}+\frac{1}{R_{2} C_{1}} V_{2}+\frac{1}{R_{1} C_{1}} V_{s} \\
\frac{d V_{2}}{d t}=\frac{1}{R_{2} C_{2}} V_{1}-\frac{1}{R_{2} C_{2}} V_{2} \\
\frac{d}{d t}\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\left(\frac{1}{R_{2} C_{1}}+\frac{1}{R_{1} C_{1}}\right) & \frac{1}{R_{2} C_{1}} \\
\frac{1}{R_{2} C_{2}} & \frac{1}{R_{2} C_{2}}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{R_{1} C_{1}} V_{s} \\
0
\end{array}\right]
\end{gathered}
$$

