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Spectral Theorem (finish)
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Least Squares and Minimum Norm Solution

|dentifying Low-dim Linear Subspace



Spectral Theorem

Diagonalization for A € R™*" with n independent eigenvectors: V'AV =

Triangularization for A € R™*™ with real eigenvalues: U 1AU = U " AU =

For real symmetric matrices A = A" € R™*" :
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Spectral Theorem

Theorem: Let A = A" € R"*"be a real and symmetric matrix. Then
1. All eigenvalues of A are real.
2. A is diagonalizable.
3. All eigenvectors are orthogonal to each other.

An Important Example: for any B € R"™!*"™2, we have two associated symmetric matrices:

A; = BB' e R xm A; = B' B € R™2Xm



Spectral Theorem (extensions)

What if A is real and anti-symmetric: Al = —A e R

An Important Example: R(t) is a continuous rotation R(t)TR(t) =y



Singular Value Decomposition (SVD)

Diagonalization for A € R"*" with n independent eigenvectors: V-1 A1 —

Triangularization for A € R™*™ with real eigenvalues: U AU = U ' AU =

What about a non-square matrix: A € R™*"?

m>n: y=Ax? m<n: y=Ax?
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Over-determined: System Identification

Problem: consider the discrete linear system:

as] | . - S| 2]
——Z|i + 1] = AZ[i]| + Buli| + éli] —

Given: observed inputs and outputs:

Objective: learn the system parameters: A, B



Least Squares: Some Extensions
seR, DeR™> peRI eeR s=D p +¢€
unknown
1. Over-determined (I > ¢, rank|D| = q)

px =argmin ||§— Dpls =(D'D)"'D'3
p

2. Under-determined (I < ¢, rank|D| =)
px = argmin ||pl|5 st. §=Dp =D'(DD"')"'3
P

3. Ridge regression
Py = argmin ||5 — Dplla+ M|plla =([D'D+A)"'D's
p



Under-determined: Minimum-Norm Control

Definition: a system Z[i + 1| = AZ|i| + Buli| is said to be controllable if given any target state £y € R"
and initial state Z[0], we can find a timei = ¢ and a sequence of control input «[0], . .., u[¢] such that Z[¢] = Z;

T[] = A*Z[0] + Coti[f] Co=[A“'B|..-|AB|B] € R™**



Principle of (Path) Optimality

Dido of Carthage..., Euler, Lagrange, Newton, Hamilton, Jacobi, Pontryagin, Bellman, Ford, Kalman
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Principle of Optimality (Richard Bellman’54):
An optimal path has the property that any subsequent portion is optimal.



Minimum Norm Solution

Theorem: Let A € R™*™ have full row rank, i.e. rank(A) < m. Then for any ¥ € R" the following problem
min ||Z||3 subject to ¥ = AZ
has a unique optimal solution Z, = A' (AA")™ 1§

Proof:



Least-Squares vs Minimum-Norm Solutions

Moore-Penrose pseudo inverse of A € R™*" . = AZ, &= A'§. Moore-Penrose pseudo inverse

m >nand rank(4) =n: Al =

m < n and rank(A)

A € R™*™ not full column or row rank?

(AAT)—lAT

m: Al =A"(4A4")7!

“It is quite probable that our mathematical insights and understandings are
often used to achieve things that could in principle also be achieved
computationally but where blind computation without much insight may
turn out to be so inefficient that it is unworkable.”

-- Roger Penrose, Shadows of the Mind



Identifying a Low-dim Linear Subspace

“Principal Component”

A Y2




Identifying Low-dim Linear Subspaces
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Recovering a Low-dim Linear Subspace

One low-dim subspace Multiple low-dim subspaces

Data space R™
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Identifying a Low-dim Linear Subspace

Given X = [¥1, %5, ..., T,] € R™*" findalowrank [ : m£n||X — L||%, s.t. rank(L) <.



High-dimensional Data Analysis

Principal Component Analysis: Finding one linear subspace
Compressive Sensing: Finding multiple low-dim linear structures
« Solving under-determined systems of linear equations

* Low-rank matrix approximation or recovery

Deep Learning: Finding non-linear low-dimensional structures

John Wright and Yi Ma
High-Dimensional
Data Analysis

EECS 208: Computational Principles for High-Dimensional Data Analysis

with
Low-Dimensional
Models (from SVD/PCA, to Generalized PCA, Robust PCA, Nonlinear PCA, and to Deep Networks...)



https://classes.berkeley.edu/content/2021-fall-eecs-208-001-lec-001

