

# EECS 16B Designing Information Devices and Systems II Lecture 24

Prof. Yi Ma

Department of Electrical Engineering and Computer Sciences, UC Berkeley, yima@eecs.berkeley.edu

## Outline

- Singular Value Decomposition (Geometry) -
  - Minimum Norm Solution and Optimal Control
- Low-rank Matrix Approximation (Algebra)
- Principal Component Analysis (Statistics)



 $M: IR^{n} \rightarrow IR^{n}$  $\left[\overline{x}_{1}, \overline{x}_{2}, \cdots, \overline{x}_{n}\right]$ 

### **Interpretation of SVD (Geometry)**



#### **Applications of SVD: Minimum Norm Solution**

$$\begin{split} & \min_{\vec{x}} \|\vec{x}\|_{2}^{2} \text{ s.t. } \vec{y} = A\vec{x}, \text{ with } A \in \mathbb{R}^{m \times n} \text{ and } \operatorname{rank}(A) = m : \quad \vec{x}_{\star} = A^{\top} (AA^{\top})^{-1} \vec{y} \end{split}$$

$$\begin{aligned} & \text{Show: } \vec{x}_{\star} = A^{\dagger} \vec{y} (= A^{\top} (AA^{\top})^{-1} \vec{y}). \\ & \overrightarrow{x}_{\star} = A^{\dagger} \vec{y} \overset{\bullet}{=} A^{\top} (AA^{\top})^{-1} \vec{y}. \end{aligned}$$

$$\begin{aligned} & A^{\dagger} = A^{\top} (AA^{\top})^{-1} \vec{y} & \overrightarrow{x}_{\star} = A^{\top} (AA^{\top})^{-1} \vec{y} \\ & A^{\dagger} = A^{\top} (AA^{\top})^{-1} \vec{y} \\ & \overrightarrow{x}_{\star} = A^{\top} (AA^{\top})^{-1} \vec{y} \end{aligned}$$

#### **Applications of SVD: Minimum Norm Solution**





## Low-Rank Approximation (Algebra)



#### **Low-Rank Approximation: Eckart-Young Theorem**

. 1

Approximate a matrix  $A \in \mathbb{R}^{m \times n}$  with rank  $r \leq \min\{m, n\}$  by a lower-rank matrix.

$$A = [\vec{a}_{1}, \vec{a}_{2}, \dots, \vec{a}_{n}] = \sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}} = \sum_{i=1}^{\ell} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}} + \sum_{i=\ell+1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}} \quad \text{with } \sigma_{1} \ge \sigma_{2} \ge \dots \ge \sigma_{r} \ge 0$$
Theorem [Eckart-Young 1936]: The optimal solution to the low-rank approximation problem:  

$$\lim_{B \in \mathbb{R}^{m \times n}} ||A - B||_{F}^{2} \quad \text{subject to} \quad \operatorname{rank}(B) = \ell$$
is given by:  $B_{\star} = A_{\ell} = \sum_{i=1}^{\ell} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}}.$ 

$$||A - B_{\star}||_{F}^{2} = \prod_{i=1}^{\ell} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}}.$$

$$||A - B_{\star}||_{F}^{2} = \prod_{i=1}^{\ell} \sigma_{i} \vec{u}_{i} \vec{v}_{i} \vec{v}_{i}^{\mathsf{T}}.$$

$$||A - B_{\star}||_{F}^{2} = \prod_{i=1}^{\ell} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}}.$$

$$||A - B_{\star}||_{F}^{2} = \prod_{i=1}^{\ell} \sigma_{i} \vec{u}_{i} \vec{v}_{i} \vec{v}_{i}^{\mathsf{T}}.$$

$$||A - B_{\star}||_{F}^{2} = \prod_{i=1}^{\ell} \sigma_{i} \vec{v}_{i} \vec{v}_{i} \vec{v}_{i} \vec{v}_{i}^{\mathsf{T}}.$$

$$||A - \sigma_{i} \vec{v}_{i} \vec{v}_{i$$



#### **Low-Rank Approximation: Rank Minimization**

Approximate a matrix  $A \in \mathbb{R}^{m \times n}$  with rank  $r \leq \min\{m, n\}$  by a lower-rank matrix.

$$A = [\vec{a}_{1}, \vec{a}_{2}, \dots, \vec{a}_{n}] = \sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top} = \sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top} + \sum_{i=\ell+1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top}$$
Rank minimization problem:  

$$\lim_{B \in \mathbb{R}^{m \times n}} \frac{\min}{\operatorname{rank}(B)} \quad \text{subject to} \quad ||A - B||_{F}^{2} \leq \epsilon^{2}?$$

$$||A - B||_{F}^{2} = \sum_{i=L+i}^{r} \sigma_{i}^{2} \leq \epsilon^{2} \leq \epsilon^{2}?$$

$$\min_{i=L+i} \mathcal{L} = \operatorname{rank}(B)?$$

$$\int_{1}^{2} \sum_{i=L+i}^{r} \sigma_{i}^{2} \leq \epsilon^{2} \leq \epsilon^{2}$$

$$\int_{1}^{r} \sum_{i=L+i}^{r} \sigma_{i}^{2} \leq \epsilon^{2} \leq \epsilon^{2}?$$

$$\lim_{i=L+i}^{r} \sigma_{i}^{2} \leq \epsilon^{2}?$$

#### **Low-Rank Approximation: Model Selection**

Approximate a matrix  $A \in \mathbb{R}^{m \times n}$  with rank  $r \leq \min\{m, n\}$  by a lower-rank matrix.

$$A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^\top = \sum_{i=1}^\ell \sigma_i \vec{u}_i \vec{v}_i^\top + \sum_{i=\ell+1}^r \sigma_i \vec{u}_i \vec{v}_i^\top$$

Selecting a good tradeoff between rank and residual:

1. 
$$\min_{B \in \mathbb{R}^{m \times n}} \operatorname{rank}(B) = d$$
 subject to  $\sigma_{d+1}^2 \le \tau$ ?

2. 
$$\min_{B \in \mathbb{R}^{m \times n}} \alpha \cdot \operatorname{rank}(B) + \beta \cdot \sigma_{d+1}^2?$$



#### **Principal Component Analysis (Statistics) Problem** [Pearson, 1901, Hotelling, 1933]: given $A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] \in \mathbb{R}^{m \times n}$ $\vec{\mu} = \frac{1}{n}(\vec{a}_1 + \vec{a}_2 + \dots + \vec{a}_n) = \mathbf{0}$ find a normal vector $\|\vec{u}\|_2 = 1$ such that $\max_{\vec{u}} \|\vec{u}^\top A\|_2^2 = \|\vec{u}\vec{u}^\top A\|_2^2$ . ài nsamples elle à principal component, ài $\|\vec{\alpha}^{T}A\|_{2}^{2} = \sum_{i=1}^{n} (\vec{u}^{T}\vec{\alpha}_{i})^{2}$ = $\|\vec{u}\vec{u}^{T}A\|_{2}^{2} \max \|\vec{u}^{T}A\|_{2}^{2} = \vec{u}^{T}AA^{T}\vec{u}$ $= \vec{u}^{T} U \Lambda U^{T} \vec{u}$ $\Lambda = 1$ 62 $U^T \vec{u} = \vec{u} \neq - [i]$ $= \frac{1}{\lambda^{T}} \frac{1}{\lambda^{T}} \frac{1}{\lambda^{T}} = \lambda_{1}$ $||\vec{u}'||_2^2 = |$ $\vec{u}_{\#} = \int \vec{v} \cdot \vec{l}$ 1 1,212 -... Syr

### **Principal Component Analysis (Statistics)**

**Problem** [Pearson, 1901, Hotelling, 1933]:  $A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] \in \mathbb{R}^{m \times n}$  find  $\vec{u}$  such that  $\max \|\vec{u}^\top A\|_2^2$ .

 $\vec{a}_i$ 

Multiple principal components:  $U_\ell = [\vec{u}_1, \dots, \vec{u}_\ell] \in \mathbb{R}^{m imes \ell}$  orthogonal such that



#### **Applications of PCA**

#### • Eigenfaces [Turk & Pentland 1991]:



• PCANet [Chan & Ma et. al. 2015]:



#### Recognition rates (%) on FERET dataset.

Cell

Article

| Probe sets         | Fb    | Fc    | Dup-I | Dup-11 | Avg.  |
|--------------------|-------|-------|-------|--------|-------|
| LBP [18]           | 93.00 | 51.00 | 61.00 | 50.00  | 63.75 |
| DMMA [25]          | 98.10 | 98.50 | 81.60 | 83.20  | 89.60 |
| P-LBP [21]         | 98.00 | 98.00 | 90.00 | 85.00  | 92.75 |
| POEM [26]          | 99.60 | 99.50 | 88.80 | 85.00  | 93.20 |
| G-LQP [27]         | 99.90 | 100   | 93.20 | 91.00  | 96.03 |
| LGBP-LGXP [28]     | 99.00 | 99.00 | 94.00 | 93.00  | 96.25 |
| sPOEM+POD [29]     | 99.70 | 100   | 94.90 | 94.00  | 97.15 |
| GOM [30]           | 99.90 | 100   | 95.70 | 93.10  | 97.18 |
| PCANet-1 (Trn. CD) | 99.33 | 99.48 | 88.92 | 84.19  | 92.98 |
| PCANet-2 (Trn. CD) | 99.67 | 99.48 | 95.84 | 94.02  | 97.25 |
| PCANet-1           | 99.50 | 98.97 | 89.89 | 86.75  | 93.78 |
| PCANet-2           | 99.58 | 100   | 95.43 | 94.02  | 97.26 |

### Least Squares (Regression) versus PCA



## Least Squares (Regression) versus PCA

**Prediction versus Correlation** 

**Example:**  $A = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & 1 \end{bmatrix}$