

EECS 16B

Designing Information Devices and Systems II Lecture 26

Prof. Yi Ma

Department of Electrical Engineering and Computer Sciences, UC Berkeley, yima@eecs.berkeley.edu

Outline

- Linearization of Nonlinear Control Systems
 - Operating points
 - Scalar case and an example
 - Vector case and an example

Nonlinear Autonomous Systems: Equilibrium Points

$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t)) \in \mathbb{R}^n$$

$$\vec{x}[i+1] = \vec{f}(\vec{x}[i]) \in \mathbb{R}^n$$

Nonlinear Control Systems: Operating Points

$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), \vec{u}(t)) \in \mathbb{R}^n$$

$$\vec{x}[i+1] = \vec{f}(\vec{x}[i], \vec{u}[i]) \in \mathbb{R}^n$$

Scalar case:
$$\frac{dx(t)}{dt} = f(x(t), u(t)) \in \mathbb{R}$$

Nonlinear Control Systems: Example

$$m\frac{v(t)}{dt} = -\beta v(t)^2 + u(t)$$

$$\frac{dx(t)}{dt} = -\frac{\beta}{m}x(t)^{2} + \frac{1}{m}u(t) = f(x(t), u(t))$$

Nonlinear Control Systems: Example

$$\frac{dx(t)}{dt} = -\frac{\beta}{m}x(t)^{2} + \frac{1}{m}u(t) = f(x(t), u(t))$$

Vector case:
$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), \vec{u}(t))$$

Example:
$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), \vec{u}(t))$$

Example: operating points.

Example: interpretation of operating points.

Example: linearized system.

Example: stability and controllability of the linearized system.