
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Note 13: Orthonormalization

1 Overview and Motivation

Thus far, in controls, we have introduced linear models (Note 9), discussed how to learn them from data
(Note 10), calculated the asymptotical behavior of the state (Note 11), and developed a way to reach a given
target state from a given initial state (Note 12). The next step in our journey is to find a way to reach a given
target state from a given initial state in the best way (for some reasonable definition of "best"). We will do this
in Note 16, but first we will need to introduce some mathematical tools and ideas which are very powerful
in their own right.

First among these tools is the idea of orthonormalization.

Key Idea 1 (Orthonormalization)

Orthonormalization is the technique of making a set of vectors easier to work with. Given a set of
vectors, it allows us to generate a set of orthogonal and normalized vectors which has the same span.

In this note, we will cover what orthonormal vectors are, the idea of projection and its connections to
orthonormality, the process of orthonormalization via the Gram-Schmidt algorithm, some consequences of
orthonormalization, and some applications to speeding up system identification via the QR decomposition.

2 Orthogonality and Orthonormality

Recall that in EECS 16A we defined two vectors as orthogonal if they are at 90◦ to each other, or equivalently
if their dot product is 0. This can be extended to inner products 〈·, ·〉, which are themselves generalizations
of dot products, defined in EECS 16A Note 21.

Definition 2 (Orthogonal Vectors)

• Let ~x,~y ∈ Rn. Then ~x and ~y are orthogonal if and only if

〈~x, ~y〉 = 0. (1)

• Let S be a set of vectors. Then S is an orthogonal set if and only if every pair of distinct vectors in
S is orthogonal, i..e,

〈~x, ~y〉 = 0 for all ~x,~y ∈ S with ~x 6= ~y. (2)

Orthogonality is a very restrictive condition, in the sense that orthogonal sets are necessarily very struc-
tured. For example, we have the following result:

Theorem 3
Suppose S ⊆ Rn is an orthogonal set of nonzero vectors. Then S is linearly independent.

1

https://www.eecs16b.org/notes/sp22/note09.pdf
https://www.eecs16b.org/notes/sp22/note10.pdf
https://www.eecs16b.org/notes/sp22/note11.pdf
https://www.eecs16b.org/notes/sp22/note12.pdf
https://www.eecs16b.org/notes/sp22/note16.pdf
https://eecs16a.org/lecture/Note21.pdf


EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Concept Check: Prove Theorem 3.
Theorem 3 says that orthogonality is a stricter condition than linear independence; every orthogonal set

is linearly independent, but also has some additional structure that makes the inner products 0.

orthogonal

linearly independent

Corollary 4
Suppose S ⊆ Rn is an orthogonal set of nonzero vectors. Then S contains at most n vectors.

This is true because linearly independent sets in Rn have at most n vectors.
In addition, we may also talk about two sets of vectors being orthogonal to each other.

Definition 5 (Orthogonality of Sets)

Let S1, S2 ⊆ Rn be two sets of vectors. Then S1 and S2 are orthogonal to each other if and only if, for all
~x ∈ S1 and ~y ∈ S2, we have that ~x and ~y are orthogonal.

NOTE: We can say one set is orthogonal – this means that the vectors in the set are pairwise orthogonal,
in the sense of Definition 2. Or we can say two sets are orthogonal to one another – this means that the
vectors in the first set are orthogonal to the vectors in the second set, in the sense of Definition 5. We will
keep the meaning clear in these notes, but usually the two different notions are distinguished from context.

For example, if the two sets S1 and S2 are subspaces, then by saying S1 and S2 are orthogonal subspaces
we mean that every vector in S1 is orthogonal to every vector in S2 (i.e., Definition 5). This is because non-
trivial subspaces have infinitely many vectors, and thus by Corollary 4, they cannot be orthogonal sets in
the sense of Definition 2.

Definition 5 is usually useful when S1 and S2 are subspaces. In this context, we have the following
result, which will be useful in later notes.

Proposition 6
Let B1 be a basis for the subspace S1, and B2 be a basis for the subspace S2. Then S1 and S2 are
orthogonal to each other if and only if B1 and B2 are orthogonal to each other.

Concept Check: Prove Proposition 6.
In other words, Proposition 6 says that to check orthogonality of subspaces, it is only required to check

that their respective bases are orthogonal.
We may also talk about a vector ~x being orthogonal to a set S, which is just shorthand for saying that

the sets {~x} and S are orthogonal.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 2



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

There is also a second part to the definition of orthonormality – that is, normality.

Definition 7 (Normalized Vectors)

Let ~x ∈ Rn. Then ~x is normalized (i.e., has unit norm) if and only if ‖~x‖ = 1.

Now we can define orthonormality.

Definition 8 (Orthonormal Vectors)

• Let ~x,~y ∈ Rn. Then ~x and ~y are orthonormal if and only if:

– ~x and ~y are orthogonal; and

– both ~x and ~y are unit norm.

• Let S ⊆ Rn. Then S is an orthonormal set if and only if S is an orthogonal set and all vectors in S
have unit norm.

The second definition is equivalent to saying that all vectors in S are unit norm, and also are pairwise
orthogonal.

Sets of orthonormal vectors have large amounts of structure, and they are particularly nice to work with.
Along with inheriting all properties of orthogonal sets like Theorem 3, i.e.,

orthonormal

orthogonal

linearly independent

We also have properties that are specific to orthonormality, such as the following result, which also
provides a way to check for orthonormality.

Theorem 9
Let S be a set of vectors. Then S is an orthonormal set if and only if

〈~x, ~y〉 =

1 if ~x = ~y

0 if ~x 6= ~y
for all ~x,~y ∈ S. (3)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 3



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Proof. Indeed, ~x and ~y are orthogonal if and only if 〈~x, ~y〉 = 0. And 〈~x, ~x〉 = ‖~x‖2 = 1 if and only if ~x is
normalized. Applying this to all ~x,~y ∈ S obtains the claim.

NOTE: This gives a way to test whether a given set of vectors is orthonormal. If we have an expression
for each vector, we can take pairwise inner products and see that they equal to 1 or 0 depending on the
vectors we take the inner product of.

Some orthonormality properties manifest nicely as matrix equations with special matrices. For this
reason, we define the classes of matrices whose rows or columns are orthonormal sets.

Definition 10 (Orthonormal Matrices)

• A square matrix Q ∈ Rn×n whose columns or rows form an orthonormal set is called an or-
thonormal matrix.a

• A tall matrix Q ∈ Rm×n with m ≥ n whose columns form an orthonormal set is said to have
orthonormal columns.

• A wide matrix Q ∈ Rm×n with m ≤ n whose rows form an orthonormal set is said to have
orthonormal rows.

aMathematics literature has some unfortunate terminology for this; namely, in mathematics, such matrices are called orthog-
onal, even if the rows or columns are normalized.

NOTE: By Corollary 4, we cannot have a tall matrix with orthonormal rows, or a wide matrix with
orthonormal columns.

We now present the most foundational property of matrices with orthonormal rows or columns.

Theorem 11

(i) If Q ∈ Rm×n with m ≥ n is a tall matrix, then Q has orthonormal columns if and only if Q>Q =

In.

(ii) If Q ∈ Rm×n with m ≤ n is a wide matrix, then Q has orthonormal rows if and only if QQ> = Im.

(iii) If Q ∈ Rn×n is a square matrix, then Q is orthonormal if and only if Q> = Q−1.

The proof of Theorem 11 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.1. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

The property Q> = Q−1 is possibly the most important property of orthonormal matrices.

Corollary 12
If Q ∈ Rn×n is a square matrix, then it is orthonormal if and only if it has both orthonormal rows and
orthonormal columns.

A geometric interpretation of orthonormal matrices, which will be important in the future, is that mul-
tiplying a vector by an orthonormal matrix just rotates (and possibly reflects) this vector around the origin,
i.e., the length of the vector does not change. In particular, we have the following theorem, which is a little
stronger because the desired matrix doesn’t need to be square, just to have orthonormal columns.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Theorem 13 (Matrices with Orthonormal Columns are Reflections and Rotations)

(i) Let Q ∈ Rm×n with m ≥ n have orthonormal columns, and x ∈ Rn. Then ‖Q~x‖ = ‖x‖.

(ii) Let Q ∈ Rm×n with m ≥ n have orthonormal columns, and X ∈ Rn×p. Then ‖QX‖F = ‖X‖F.
(Recall the Frobenius norm from Note 10).

(iii) Let Q ∈ Rm×n with m ≤ n have orthonormal rows, and X ∈ Rp×m. Then ‖XQ‖F = ‖X‖F.

The proof of Theorem 13 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.2. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

3 Projections

Now we will review the concept of projections, which is very much intertwined with the idea of orthonor-
mality. Recall the following definition from EECS 16A Note 21.

Definition 14 (Projection)

Let ~x ∈ Rn and define S ⊆ Rn to be a subspace. Then we define the projection of ~x onto S to be the
unique point

projS(~x) := argmin
~y∈S

‖~x−~y‖. (4)

In other words, projS(~x) is the closest point in S to ~x.
Recall from EECS 16A Note 23 the following property of least squares.

Theorem 15 (Least Squares is Projection)

Let A ∈ Rm×n with m ≥ n have full column rank, and ~y ∈ Rm. Then

projCol(A)(~y) = A(A>A)−1 A>~y. (5)

We can now augment this theorem with our knowledge of orthonormal matrices.

Theorem 16 (Least Squares with Orthonormal Columns)

Let Q ∈ Rm×n with m ≥ n have orthonormal columns~q1, . . . ,~qn ∈ Rm, and ~y ∈ Rm. Then

projCol(Q)(~y) = QQ>~y =
n

∑
i=1
〈~y, ~qi〉~qi. (6)

The proof of Theorem 16 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.3. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

The following fact will be useful when doing our own orthonormalization computations.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5

https://www.eecs16b.org/notes/sp22/note10.pdf
https://eecs16a.org/lecture/Note21.pdf
https://eecs16a.org/lecture/Note23.pdf


EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Corollary 17 (Least Squares with Orthogonal Columns)

Let Z ∈ Rm×n with m ≥ n have orthogonal and nonzero columns~z1, . . . ,~zn ∈ Rm. Then

projCol(Z)(~y) =
n

∑
i=1

〈~y, ~zi〉
‖~zi‖2 ~zi =

n

∑
i=1

〈~y, ~zi〉
〈~zi, ~zi〉

~zi. (7)

Proof. Since {~z1, . . . ,~zn} is an orthogonal set of nonzero vectors, { ~z1
‖~z1‖

, . . . , ~zn
‖~zn‖} is an orthonormal set with

the same span, which is still Col(Z). Starting with Theorem 16, we have

projCol(Z)(~y) =
n

∑
i=1

〈
~y,

~zi
‖~zi‖

〉
~zi
‖~zi‖

=
n

∑
i=1

〈~y, ~zi〉
‖~zi‖2 ~zi =

n

∑
i=1

〈~y, ~zi〉
〈~zi, ~zi〉

~zi. (8)

We can, in fact, abstract away the idea of projecting onto column spaces and instead discuss projections
onto arbitrary subspaces.

Theorem 18 (Projection with Orthogonal or Orthonormal Columns)

Let S ⊆ Rm be a subspace and {~s1, . . . ,~sn} be a basis of orthogonal vectors for this subspace. Then

projS(~x) =
n

∑
i=1

〈~x, ~si〉
‖~si‖2 ~si =

n

∑
i=1

〈~x, ~si〉
〈~si, ~si〉

~si. (9)

If {~s1, . . . ,~sn} is an orthonormal set, then

projS(~x) =
n

∑
i=1
〈~x, ~si〉~si. (10)

Concept Check: Use Theorem 16 and Corollary 17 to prove Theorem 18.
This formula is useful in practice – after all, it allows us to mechanically compute projections just by

having the basis vectors. It is also useful in theoretical aspects - it lets us prove things, such as the following
result, which is inspired by the exposition in EECS 16A Note 23. Namely, the projection formula above
allows us to give a much shorter proof of the following theorem, which allows us to determine whether a
given vector is a projection onto a given subspace.

Theorem 19 (Orthogonality Principle)

Let S ⊆ Rm be a linear subspace, and ~x ∈ Rm be any vector. Then the following are equivalent:

(i) ~y = projS(~x);

(ii) ~y−~x is orthogonal to S.

The proof of Theorem 19 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.4. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

Since the proof uses theorems that we haven’t stated or proved yet, but will do so by the end of the note, we
recommend you read the proof after reading the rest of the note. No other theorems in this note depend on Theorem 19.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6

https://eecs16a.org/lecture/Note23.pdf


EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

4 Gram-Schmidt Orthonormalization

Now that we have defined orthonormal vectors and sets, and shown off some of their properties, we can
now learn how to convert sets of vectors into orthonormal sets of vectors which have the same span. The
easiest way to do this is, for each vector in turn, we subtract off the component of this vector which is in the
direction of all the previous vectors we processed. Mathematically, this component is the projection of the
vector onto the span of the previous vectors.

So really, we can execute the following pseudocode, given some vectors ~a1, . . . ,~a` that we want to or-
thonormalize:

• Set~q1 := ~a1
‖~a1‖

.

• For i = 2, 3, . . . , `:

– Set~zi :=~ai − projSpan(~q1,...,~qi−1)
(~ai).

– Set~qi := zi
‖~zi‖

.

Intuitively, this gives us a nice picture (in the case ` = n = 2):

~a1

~a2

~a1

~a2

~q1

~a1

~a2

projSpan(~q1)
(~a2)

~q1

~a2 − projSpan(~q1)
(~a2)

~a1

~a2

projSpan(~q1)
(~a2)

~q1

~a2 − projSpan(~q1)
(~a2)

~z2

~a1

~a2

projSpan(~q1)
(~a2)

~q1

~a2 − projSpan(~q1)
(~a2)

~z2

~q2
~a1

~a2

~q1

~q2

Figure 1: Orthonormalization in action, going left to right then top to bottom.

Wikipedia also has a very nice animation of this process.
There are two questions remaining:

• How we would calculate projSpan(~q1,...,~qi−1)
(~ak). Indeed, Theorem 16 tells us that

projSpan(~q1,...,~qi−1)
(~ai) =

i−1

∑
k=1
〈~ai, ~qk〉~qk. (11)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process#/media/File:Gram-Schmidt_orthonormalization_process.gif


EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

• What to do if any ~zi = ~0 (and so we cannot divide by its norm to get ~qi). In this case it depends
what exactly we want to do with the algorithm, but usually we can just throw it out, as it does not
contribute to the span.

All of this put together exactly forms the Gram-Schmidt orthogonalization algorithm.

Algorithm 20 Gram-Schmidt Orthogonalization Algorithm

Input: A set of vectors {~a1, . . . ,~a`} ⊆ Rn.

Output: An orthonormal set of vectors {~q1, . . . ,~ql} which spans the same set.

1: function GRAMSCHMIDT({~a1, . . . ,~a`})
2: for i = 1, . . . , ` do

3: ~zi :=~ai −
i−1

∑
k=1
〈~ai, ~pk〉~pk . If i = 1 then there are no k to sum over, so~z1 =~a1.

4: if~zi =~0n then

5: ~pi =~0n

6: else

7: ~pi :=
~zi
‖~zi‖

8: end if

9: end for

10: return {~q1, . . . ,~ql} := {~p1, . . . ,~p`} with the `− l zero vectors discarded.

11: end function

Here we are being very pedantic with the checks that~zi =~0, etc, because this function will be extremely
critical in a variety of procedures we will come up with. As such, we would like to have well-defined
behavior in every possible case.

The main result related to Algorithm 20 is the following theorem, which states that the Gram-Schmidt
process accomplishes what we want to do. This type of theorem is called a proof of correctness in the litera-
ture.

Theorem 21 (Correctness of Gram-Schmidt Orthogonalization Algorithm)

Let {~a1, . . . ,~a`} ⊆ Rn be a set of vectors and {~q1, . . . ,~ql} := GRAMSCHMIDT({~a1, . . . ,~a`}). Then

(i) {~q1, . . . ,~ql} is an orthonormal set of vectors.

(ii) Span(~q1, . . . ,~ql) = Span(~a1, . . . ,~a`).

Further, if {~a1, . . . ,~a`} are linearly independent then

(iii) ` = l. (That is, no vectors are discarded.)

(iv) Span(~q1, . . . ,~qi) = Span(~a1, . . . ,~ai) for all 1 ≤ i ≤ `.

The proof of Theorem 21 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.5. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

An example of this algorithm being run is in Section 8.1.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

5 Consequences of Orthonormalization

Once we know that we are able to orthonormalize finite sets of vectors, we have the following abstract
result.

Theorem 22 (Existence of Orthonormal Basis)

Let S ⊆ Rn be a subspace. There exists an orthonormal basis for S.

Proof. Take any basis for S and run Gram-Schmidt on it.

There is also a constructive way to extend orthonormal bases for subspaces to other subspaces.

Theorem 23 (Extending an Orthonormal Basis)

Let S ⊆ T ⊆ Rn be subspaces. Then for every orthonormal basis BS of S, there exists an orthonormal
basis BT for T that contains BS.

NOTE: We mean that BT contains BS in the following sense: each of the dim(S) vectors in BS is also one
of the dim(T) vectors in BT .

Proof. Take any basis B of T and run Gram-Schmidt on BS ∪ B to get BT . Because the orthonormal vectors
in BS are processed first by Gram-Schmidt, BS is unchanged by Gram-Schmidt, so BS is contained in BT .
And since B spans T, we know that BS ∪ B spans T, so BT is a basis for T.

NOTE: Here we assume that we are using ordered sets (which can essentially be thought of as lists or ar-
rays) to hold our bases. In this context, BS ∪ B can be thought of as the concatenation of the lists representing
BS and B, with the elements of BS going first.

Algorithmically, we can write this process in the following way.

Algorithm 24 Basis Extension

Input: Subspaces S ⊆ T ⊆ Rn, an orthonormal basis BS for S.

Output: An orthonormal basis BT for T that contains BS.

1: function EXTENDBASIS(BS, T)

2: B := any basis for T.

3: return BT := GRAMSCHMIDT(BS ∪ B).

4: end function

NOTE: The basis extension algorithm is most commonly used with T = Rn, i.e., in the context of ex-
tending orthonormal bases for a subspace S to an orthonormal basis for Rn. One common choice for an
arbitrary basis B of T is to pick B to be the columns of the identity matrix, i.e., B = {~e1, . . . ,~en}.

An example of this algorithm being run is in Section 8.2.

6 (OPTIONAL) The QR Decomposition

Theorem 21 tells us that, if {~a1, . . . ,~a`} is linearly independent, then each ~ai can be written in terms of
~q1, . . . ,~qi only. This gives the linear system writing~a1, . . . ,~a` in terms of the ~qk a triangular structure. More
formally, we have the following decomposition:

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 9



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Theorem 25 (QR Decomposition)

Let A ∈ Rn×` have full column rank. Then there exists a matrix Q ∈ Rn×` with orthonormal columns,
and an upper triangular matrix R ∈ R`×` (i.e., rij = 0 for i > j), such that

A = QR. (12)

The proof of Theorem 25 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.6.

The proof also reveals a constructive way to reach a QR decomposition.

Algorithm 26 QR Decomposition

Input: A matrix A ∈ Rn×` of full column rank.

Output: A matrix Q with orthonormal columns, and an upper-triangular matrix R, such that A = QR.

1: function QR(A)

2: {~a1, . . . ,~a`} := columns of A

3: {~q1, . . . ,~q`} := GRAMSCHMIDT({~a1, . . . ,~a`})
4: Q :=

[
~q1 · · · ~q`

]
∈ Rn×`

5: R :=


〈~a1, ~q1〉 〈~a2, ~q1〉 · · · 〈~a`, ~q1〉

0 〈~a2, ~q2〉 · · · 〈~a`, ~q2〉
...

...
. . .

...

0 0 · · · 〈~a`, ~q`〉

 ∈ R`×`

6: return Q, R

7: end function

7 (OPTIONAL) Application: Speeding Up Model Selection

Previously, in system identification (see Note 10), we knew exactly how many parameters our model had,
and were able to design an algorithm to learn the parameters from data. In practice, we sometimes do
not know how many parameters our model has; this is related to the problem of model selection in machine
learning literature.

More formally, suppose we have several datasets D1 ∈ Rn×1, D2 ∈ Rn×2, . . . , D` ∈ Rn×`, where the
columns of Di are a strict subset of the columns of Di+1. In the context of system ID, Di is the dataset
if we include the i "most relevant" states and try to build a model off of that.1 We also have an output
vector ~s ∈ Rn. We want to learn parameter vectors ~̂p1, . . . ,~̂p` where ~̂pi ∈ Ri such that Di~̂pi ≈ ~s. With
these estimates, we can evaluate which ~̂pi performs best in practice (or via validation), and thereby learn a
compact (minimal states used) yet useful model for the system.

1There are two questions here. First, why would we not use all the states? The answer is that in most modern applications, there are
usually many possible states to include, and most of them don’t have any effect on the results, so including them in the model is both
computationally inefficient and can cause an "overfitting" phenomenon where the parameters use the irrelevant states to erroneously
capture the effects of noise. Second, how would we pick the "most relevant" states? The answer is not not simple; there are many ways
to do this, and it is a very large problem in statistics and control theory, but it suffices to say that there are many approaches to this
"feature selection" that work in practice.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 10

https://www.eecs16b.org/notes/sp22/note10.pdf


EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

One way to do this is our system identification technique of least squares. In particular, we solve a
sequence of least squares problems

~̂pi ∈ argmin
~pi∈Ri

‖Di~pi −~s‖ (13)

which has solution
~̂pi := (D>i Di)

−1D>i ~s. (14)

The issue is that for large n, computing (D>i Di)
−1 for every i is computationally inefficient, as measured

by the number of floating point operations required for an algorithm to do the computation. Matrix mul-
tiplication to compute D>i Di takes roughly in2 floating point operations, and then taking the inverse takes
roughly i3 floating point operations. Summing this up over all i ∈ {1, . . . , `} means that this process takes
roughly `4 + `2n2 floating point operations, which is extremely large (and thus extremely slow to compute)
when n and ` are large.

Instead, what we can do is use the fact that least squares is a projection. The following algorithm speeds
up this repeated least squares a lot.

• Take the QR decomposition D` to get matrices Q` :=
[
~q1 . . . ~q`

]
and R` as defined in the QR

decomposition, which takes around `2n floating point operations. In addition, for notation’s sake we
can define Qi :=

[
~q1 . . . ~qi

]
.

• Let ~̂w1 := ~q>1~s; this amounts to efficiently calculating Q>1~s.

• For each i ∈ {2, . . . , `}, form ~̂wi by appending the entry ~q>i ~s to ~̂wi−1; this amounts to efficiently
calculating Q>i ~s.

• Note that ~̂wi 6= ~̂pi, because we changed the data from Di to Qi. To relate the two, we note that

Di~̂pi = Di(D>i Di)
−1D>i ~s = projCol(Di)

(~s) = projCol(Qi)
(~s) = QiQ>i ~s = Qi~̂wi. (15)

In particular, decomposing Di = QiRi where Ri is the upper left i × i sub-block of R` (and is in
particular upper triangular), we have

QiRi~̂pi = Qi~̂wi. (16)

Left-multiplying by Qi on both sides, we get

Ri~̂pi =
~̂wi. (17)

Since Ri is upper triangular, we can solve for ~̂pi efficiently using backward substitution.

Overall this takes much fewer floating point operations – certainly fewer than `4 + `2n2.
Concept Check: How many floating point operations does our new algorithm require, in terms of ` and

n?

8 Examples

We give an extended example for the two main algorithms we present in this note.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

8.1 Gram-Schmidt

Say we have two vectors in R3:

~a1 :=

3
4
0

 ~a2 :=

4
3
0

 (18)

that we want to run Gram-Schmidt on. Mechanically, we have

~p1 :=
~a1

‖~a1‖
=

1
5

3
4
0

 =


3
5
4
5
0

 . (19)

Now we compute the projection residual:

~z2 =~a2 − 〈~a2, ~p1〉~p1 (20)

=

4
3
0

−〈
4

3
0

 ,


3
5
4
5
0

〉


3
5
4
5
0

 (21)

=

4
3
0

−(4 · 3
5
+ 3 · 4

5
+ 0 · 0

)
3
5
4
5
0

 (22)

=

4
3
0

− 24
5


3
5
4
5
0

 (23)

=

4
3
0

−


72
25
96
25
0

 (24)

=


28
25
− 21

25
0

 . (25)

Then we can normalize it to get ~p2 as

~p2 =
~z2

‖~z2‖
(26)

=


4
5
− 3

5
0

 . (27)

Since ~p1 6=~03 and ~p2 6=~03, we output

~q1 =


3
5
4
5
0

 and ~q2 =


4
5
− 3

5
0

 . (28)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

8.2 Extending Basis

Let’s say we wanted to extend our basis {~q1,~q2} to a basis for R3. To do this, we would pick a basis for R3,
usually the identity basis {~e1,~e2,~e3}. Then we would run Gram-Schmidt on {~q1,~q2,~e1,~e2,~e3}. Since R3 is
three-dimensional, any basis for R3 contains 3 vectors, so the output of Gram-Schmidt will also contain 3
vectors, which is an orthonormal basis for R3.

Anyways, we re-run Gram-Schmidt on this basis. The computation for ~p1 and ~p2 goes the same way as
the previous section since we are running it on the same vectors in the same order, so we get

~p1 :=


3
5
4
5
0

 and ~p2 :=


4
5
− 3

5
0

 . (29)

Now ~p3,~p4,~p5 are new. Let’s start with computing the projection residual:

~z3 = ~e1 − 〈~e1, ~p1〉~p1 − 〈~e1, ~p2〉~p2 (30)

=

1
0
0

−〈
1

0
0

 ,


3
5
4
5
0

〉


3
5
4
5
0

−〈
1

0
0

 ,


4
5
− 3

5
0

〉


4
5
− 3

5
0

 (31)

=

1
0
0

− 3
5


3
5
4
5
0

− 4
5


4
5
− 3

5
0

 (32)

=

1
0
0

−


9
25
12
25
0

−


16
25
− 12

25
0

 (33)

=

0
0
0

 . (34)

This implies that ~p3 =~03 and therefore there is no corresponding~q vector. Similarly,

~z4 = ~e2 − 〈~e2, ~p1〉~p1 − 〈~e2, ~p2〉~p2 − 〈~e2, ~p3〉 ~p3︸︷︷︸
=~03

(35)

= ~e2 − 〈~e2, ~p1〉~p1 − 〈~e2, ~p2〉~p2 (36)

=

0
1
0

−〈
0

1
0

 ,


3
5
4
5
0

〉


3
5
4
5
0

−〈
0

1
0

 ,


4
5
− 3

5
0

〉


4
5
− 3

5
0

 (37)

=

0
1
0

− 4
5


3
5
4
5
0

−(−3
5

)
4
5
− 3

5
0

 (38)

=

0
1
0

−


12
25
16
25
0

+


12
5
− 9

25
0

 (39)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

=

0
0
0

 . (40)

Again, this implies that ~p4 =~03 and therefore there is no corresponding~q vector.
Finally, computing the residual for~e3 gets us

~z5 = ~e3 − 〈~e3, ~p1〉~p1 − 〈~e3, ~p2〉~p2 − 〈~e3, ~p3〉 ~p3︸︷︷︸
=~03

− 〈~e3, ~p4〉 ~p4︸︷︷︸
=~03

(41)

= ~e3 − 〈~e3, ~p1〉~p1 − 〈~e3, ~p2〉~p2 (42)

=

0
0
1

−〈
0

0
1

 ,


3
5
4
5
0

〉


3
5
4
5
0

−〈
0

0
1

 ,


4
5
− 3

5
0

〉


4
5
− 3

5
0

 (43)

=

0
0
1

− 0 ·


3
5
4
5
0

− 0 ·


4
5
− 3

5
0

 (44)

=

0
0
1

 . (45)

Then we have

~p5 :=
~z5

‖~z5‖
=

0
0
1

 . (46)

Thus~q3 = ~p5 =

0
0
1

. Gram-Schmidt outputs

~q1 =


3
5
4
5
0

 , ~q2 =


4
5
− 3

5
0

 , ~q3 =

0
0
1

 (47)

which is indeed an orthonormal basis for R3.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

A Longer Proofs

A.1 Proof of Theorem 11

Proof of Theorem 11.

(i) Suppose the columns of Q are~q1, . . . ,~qn ∈ Rm. Then we have

Q>Q =
[
~q1 · · · ~qn

]> [
~q1 · · · ~qn

]
(48)

=


~q>1

...
~q>n

 [~q1 · · · ~qn

]
(49)

=


~q>1 ~q1 · · · ~q>1 ~qn

...
. . .

...
~q>n ~q1 · · · ~q>n ~qn

 (50)

=


〈~q1, ~q1〉 · · · 〈~qn, ~qn〉

...
. . .

...
〈~q1, ~qn〉 · · · 〈~qn, ~qn〉

 (51)

By Theorem 9, we see that Q>Q = In if and only if {~q1, . . . ,~qn} are orthonormal.

(ii) Apply (i) to Q> ∈ Rn×m, which is a tall matrix. Note that

QQ> = (Q>)>(Q>). (52)

This tells us that
QQ> = Im (53)

if and only if Q> has orthonormal columns, i.e., Q has orthonormal rows.

(iii) Suppose Q is orthogonal. Then it has orthonormal columns or orthonormal rows. If it has orthonor-
mal columns then, by (i), Q>Q = In; if it has orthonormal rows then, by (ii), QQ> = In. Either way,
Q> = Q−1 as desired. Going the other way, if Q> = Q−1 then Q>Q = In, which confirms by (i) that
Q has orthonormal columns and is thus orthonormal.

A.2 Proof of Theorem 13

Proof of Theorem 13.

(i)

‖Q~x‖ =
√
‖Q~x‖2 =

√
〈Q~x, Q~x〉 =

√〈
~x, Q>Q~x

〉
=
√
〈~x, ~x〉 =

√
‖~x‖2 = ‖~x‖. (54)

(ii)

‖QX‖F =
√
‖QX‖2

F =

√√√√ p

∑
i=1
‖(QX)i‖2 =

√√√√ p

∑
i=1
‖Q~xi‖2 =

√√√√ p

∑
i=1
‖~xi‖2 =

√
‖X‖2

F = ‖X‖F. (55)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 15



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

(iii) Q> has orthonormal columns. Then

‖XQ‖F =
∥∥∥(XQ)>

∥∥∥
F
=
∥∥∥Q>X>

∥∥∥
F
=
∥∥∥X>

∥∥∥
F
= ‖X‖F. (56)

A.3 Proof of Theorem 16

Proof of Theorem 16. Since Q has orthonormal columns, by Theorem 3, we know that the columns of Q are
linearly independent, so Q has full column rank. By Theorem 15, we have

projCol(Q)(~y) = Q(Q>Q)−1Q>~y. (57)

By Theorem 11, since Q has orthonormal columns, we know that Q>Q = In. Thus

projCol(Q)(~y) = Q(Q>Q)−1Q>~y (58)

= Q(In)
−1Q>~y (59)

= QQ>~y (60)

=
[
~q1 · · · ~qn

] 
~q>1

...
~q>n

~y (61)

=
[
~q1 · · · ~qn

] 
~q>1 ~y

...
~q>n ~y

 (62)

=
[
~q1 · · · ~qn

] 
〈~y, ~q1〉

...
〈~y, ~qn〉

 (63)

=
n

∑
i=1
〈~y, ~qi〉~qi. (64)

A.4 Proof of Theorem 19

Proof of Theorem 19. For now, we will take for granted the fact that S has an orthonormal basis {~s1, . . . ,~sn} ⊂
Rm; the existence of such a basis is proved in Theorem 22, which does not rely on this theorem. We will
also take for granted the fact that this basis can be extended to an orthonormal basis {~s1, . . . ,~sm} for Rm;
this extension exists by Theorem 23, which also does not rely on this theorem.

The proof technique used here is very common – when we have an orthonormal basis, write everything in
terms of this basis, and lots of stuff will cancel.

(i) =⇒ (ii) By Theorem 18, we know that

~y = projS(~x) =
n

∑
i=1
〈~x, ~si〉~si. (65)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 16



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Now ~x can be written as its projection onto Rm, that is,

~x = projRm(~x) =
m

∑
i=1
〈~x, ~si〉~si. (66)

Now

~x−~y =
m

∑
i=1
〈~x, ~si〉~si −

n

∑
i=1
〈~x, ~si〉~si =

m

∑
i=n+1

〈~x, ~si〉~si. (67)

Now~x−~y is a linear combination of~sn+1, . . . ,~sm, and so~x−~y ∈ Span(~sn+1, . . . ,~sm). Since {~s1, . . . ,~sm}
is an orthonormal set, we have that {~s1, . . . ,~sn} and {~sn+1, . . . ,~sm} are orthogonal as sets, so by Propo-
sition 6, S = Span(~s1, . . . ,~sn) and Span(~sn+1, . . . ,~sm) are orthogonal subspaces. Thus S is orthogonal
to ~x−~y and (ii) holds.

(ii) =⇒ (i) Let~z be any vector in S other than ~y. Then

‖~z−~x‖2 = ‖(~z−~y) + (~y−~x)‖2 (68)

= 〈(~z−~y) + (~y−~x), (~z−~y) + (~y−~x)〉 (69)

= 〈~z−~y, ~z−~y〉+ 〈~z−~y, ~y−~x〉+ 〈~y−~x, ~z−~y〉+ 〈~y−~x, ~y−~x〉 (70)

= ‖~z−~y‖2 + 2 〈~z−~y, ~y−~x〉+ ‖~y−~x‖2 (71)

= ‖~z−~y‖2 + ‖~y−~x‖2 (72)

> ‖~y−~x‖2 (73)

where we used the fact that~z−~y ∈ S since S is a subspace, then invoked (ii). Thus

‖~z−~x‖2 > ‖~y−~x‖2 for all~z ∈ S \ {~y} (74)

which implies that ~y = projS(~x) and thus (i) holds.

A.5 Proof of Theorem 21

Proof of Theorem 21. Let {~a1, . . . ,~a`} ⊆ Rn be a set of vectors and {~q1, . . . ,~ql} := GRAMSCHMIDT({~a1, . . . ,~a`}).
For notation’s sake, let~z1 :=~a1.

The usual flow for a proof of correctness is to show that each line, or block of lines, in the algorithm
does what we want it to do. Given that the general flow of the algorithm is to build from~ai’s to~zi’s to ~pi’s
to~qi’s, we will start with proving facts about the~zi’s.

(a) We want to show some claims about the~zi’s:

(I) {~z1, . . . ,~z`} is an orthogonal set.

(II) For each i we have Span(~z1, . . . ,~zi) = Span(~a1, . . . ,~ai).

(III) ~zi =~0n if and only if~ai ∈ Span(~a1, . . . ,~ai−1).

To do this, we first write the~zi in terms of~ai and other~zk.

~zi =~ai −
i−1

∑
k=1
〈~ai, ~pi〉~pi (75)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 17



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

=~ai −
i−1

∑
k=1

~pk 6=~0n

〈~ai, ~pk〉~pk −
i−1

∑
k=1

~pk=~0n

〈~ai, ~pk〉 ~pk︸︷︷︸
=~0n

(76)

=~ai −
i−1

∑
k=1

~pk 6=~0n

〈~ai, ~pk〉~pk (77)

=~ai −
i−1

∑
k=1

~zk 6=~0n

〈
~ai,

~zk
‖~zk‖

〉
~zk
‖~zk‖

(78)

=~ai −
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
‖~zk‖2 ~zk (79)

=~ai −
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
〈~zk, ~zk〉

~zk. (80)

This is an expression for ~zi in terms of ~zk for k < i, as well as ~ai. Note that we summed over only k
such that~zk 6=~0n; this is to avoid division by 0 errors.

Now we are ready to prove our claims.

(I) We show that {~z1, . . . ,~z`} is an orthogonal set. We do this by showing that for each i, ~zi is
orthogonal to all the ~zk for k < i. We will show this for each i starting at i = 1 and proceeding
iteratively.2

We start with i = 1, where there are no~zk for k < i, and so we are done by definition – we have
shown that ~zi is orthogonal to all the ~zk coming before it (because there are no such ~zk and the
statement becomes tautological).

For our general case, we show that ~zi is orthogonal to all ~zk before it, i.e., for k < i. If ~zk = ~0n

then
〈~zi, ~zk〉 =

〈
~zi, ~0n

〉
= 0 (81)

so~zi is orthogonal to~zk. We now just need to show that~zi is orthogonal to all~zk 6= ~0n for k < i.
These are exactly the terms appearing in the sum in Equation (80). Indeed, we can take the inner
product and use Equation (80) to get

〈~zi, ~zk〉 =
〈
~ai −

i−1

∑
j=1

~zj 6=~0n

〈
~ai, ~zj

〉〈
~zj, ~zj

〉~zj, ~zk

〉
(82)

= 〈~ai, ~zk〉 −
〈

i−1

∑
j=1

~zj 6=~0n

〈
~ai, ~zj

〉〈
~zj, ~zj

〉~zj, ~zk

〉
(83)

= 〈~ai, ~zk〉 −
i−1

∑
j=1

~zj 6=~0n

〈
~ai, ~zj

〉〈
~zj, ~zj

〉 〈~zj, ~zk
〉

(84)

2If we had CS70 or an equivalent class as a prerequisite, this would be essentially an induction proof. But again, knowing the
formalism for induction isn’t needed for reading and understanding this.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 18



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

Here we used bilinearity of the inner product to separate out terms and move scalars to the
outside of the inner product. So now we have a bunch of inner products of the form

〈
~zj, ~zk

〉
for

1 ≤ j, k < i. Since we already processed steps 1, . . . , i − 1 by the time we get to step i in our
iteration, we already know that ~zj is orthogonal to all the ~zm for m < j, and similarly that ~zk is
orthogonal to all the ~zm for m < k. Thus, if one of j or k is less than the other, then they are
orthogonal; otherwise, j = k.

Anyways, now that we know
〈
~zj, ~zk

〉
= 0 unless j = k, we can write

〈~zi, ~zk〉 = 〈~ai, ~zk〉 −
i−1

∑
j=1

~zj 6=~0n

〈
~ai, ~zj

〉〈
~zj, ~zj

〉 〈~zj, ~zk
〉

(85)

= 〈~ai, ~zk〉 −
〈~ai, ~zk〉
〈~zk, ~zk〉

〈~zk, ~zk〉 −
i−1

∑
j=1

~zj 6=~0n
j 6=k

〈
~ai, ~zj

〉〈
~zj, ~zj

〉 〈~zj, ~zk
〉︸ ︷︷ ︸

=0

(86)

= 〈~ai, ~zk〉 −
〈~ai, ~zk〉
〈~zk, ~zk〉

〈~zk, ~zk〉 (87)

= 〈~ai, ~zk〉 − 〈~ai, ~zk〉 (88)

= 0 (89)

and thus ~zi is orthogonal to ~zk. This shows that ~zi is orthogonal to ~z1, . . . ,~zi−1 for each i. Thus
we have that {~z1, . . . ,~zi} is an orthogonal set for every i, and so {~z1, . . . ,~z`} is an orthogonal set.

(II) We show that Span(~z1, . . . ,~zi) = Span(~a1, . . . ,~ai) for each i. This is equivalent to showing that~zi

can be written as a linear combination of~a1, . . . ,~ai, and~ai can be written as a linear combination
of~z1, . . . ,~zi, for each i.

We first claim that ~ai can be written as a linear combination of ~z1, . . . ,~zi, for each i. Indeed, by
rearranging Equation (80), we have

~ai = ~zi +
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
〈~zk, ~zk〉

~zk. (90)

This is a linear combination of~z1, . . . ,~zi whose value is~ai, and so we are done.

Now we claim that~zi can be written as a linear combination of~a1, . . . ,~ai. We show this for every
1 ≤ i ≤ n, starting at i = 1 and proceeding iteratively.

We start with i = 1, in which case~z1 =~a1 is the linear combination we want.

The general case starts again with Equation (80), giving us:

~zi =~ai −
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
〈~zk, ~zk〉

~zk. (91)

Since k < i, we have already processed ~zk in our iteration, and thus can write ~zk = ∑k
j=1 αjk~ak,

i.e., generate a linear combination of~a1, . . . ,~ak whose value is~zk. This gets us

~zi =~ai −
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
〈~zk, ~zk〉

~zk (92)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 19



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

=~ai −
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
〈~zk, ~zk〉

k

∑
j=1

αjk~aj (93)

=~ai −
i−1

∑
k=1

~zk 6=~0n

k

∑
j=1

αjk
〈~ai, ~zk〉
〈~zk, ~zk〉

~aj (94)

which is a linear combination of~a1, . . . ,~ai (remember that the term 〈~ai , ~zk〉
〈~zk , ~zk〉

is just a scalar). Thus
we are done and the spans are equal.

(III) Finally, we want to show that~zi =~0n if and only if~ai ∈ Span(~a1, . . . ,~ai−1). Indeed, we start with
Equation (80), use Theorem 18 to write the sum as a projection, and then simplify with the fact
that adding zero vectors to a set maintains the span of the set.

~zi =~ai −
i−1

∑
k=1

~zk 6=~0n

〈~ai, ~zk〉
〈~zk, ~zk〉

~zk (95)

=~ai − projSpan(~zk : 1≤k<i, ~zk 6=~0n)(~ai) (96)

=~ai − projSpan(~z1,...,~zi−1)
(~ai). (97)

We can now use (II) to simplify even more, since Span(~z1, . . . ,~zi−1) = Span(~a1, . . . ,~ai−1).

~zi =~ai − projSpan(~z1,...,~zi−1)
(~ai) (98)

=~ai − projSpan(~a1,...,~ai−1)
(~ai). (99)

Thus~zi =~0n if and only if~ai = projSpan(~a1,...,~ai−1)
(~ai), i.e., if and only if~ai ∈ Span(~a1, . . . ,~ai−1).

Phew! That was quite a lot. What just transpired is one of the single most involved proofs in this
course. But it’s necessary to completely understand Gram-Schmidt, which is an extremely critical
sub-routine in many concepts we will cover.

If you’ve come this far, take a breather, and then dive right back into it. We promise, the rest of the
proof is a lot simpler.

(b) We now want to show some claims about the ~pi’s:

(I) {~p1, . . . ,~p`} is an orthogonal set.

(II) For every i, either ~pi =~0n or ‖~pi‖ = 1.

(III) For each i we have Span(~p1, . . . ,~pi) = Span(~a1, . . . ,~ai).

(IV) ~pi =~0n if and only if~ai ∈ Span(~a1, . . . ,~ai−1).

We can show them rather quickly, as a result of our previous claims about the~zi’s. The crucial obser-
vation to make here is that, for each i, ~pi is a scalar multiple of~zi, say ~pi = αi~zi. If~zi =~0 we may take
αi = 1; otherwise we can take αi =

1
‖~zi‖

. Thus in either case αi 6= 0. With this framework, we now
give the proofs.

(I) Let 1 ≤ k < i ≤ `. Then

〈~pi, ~pk〉 = 〈αi~zi, αk~zk〉 (100)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 20



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

= αiαk 〈~zi, ~zk〉 (101)

= 0 (102)

since {~z1, . . . ,~z`} is an orthogonal set. Thus {~p1, . . . ,~p`} is an orthogonal set.

(II) Take i such that~zi =~0n. Then by the algorithm, ~pi =~0n, so

‖~pi‖ =
∥∥∥~0n

∥∥∥ = 0. (103)

Now take i such that~zi 6=~0n. Then

‖~pi‖ = ‖αi~zi‖ = αi‖~zi‖ =
‖~zi‖
‖~zi‖

= 1. (104)

(III) For each i we have Span(~z1, . . . ,~zi) = Span(~a1, . . . ,~ai). Since ~pi = αi~zi where αi 6= 0, we know
that Span(~z1, . . . ,~zi) = Span(~p1, . . . ,~pi). Thus Span(~a1, . . . ,~ai) = Span(~p1, . . . ,~pi).

(IV) We have that ~pi = αi~zi with αi 6= 0, so ~pi =~0n if and only if~zi =~0n. We have already shown that
this is true if and only if~ai ∈ Span(~a1, . . . ,~ai−1), so we obtain the conclusion.

Nearly there! Once we have the facts proven above, we can prove the required original claims made in
Theorem 21. Suppose for now that {~a1, . . . ,~a`} is a general set of vectors.

(i) To show that {~q1, . . . ,~ql} is an orthonormal set, we use the fact that {~p1, . . . ,~p`} is an orthogonal set
where each vector is either the zero vector or has unit norm. Since {~q1, . . . ,~ql} is {~p1, . . . ,~p`} with all
zero vectors removed, we have that {~q1, . . . ,~ql} is an orthogonal set where all vectors have unit norm,
and is hence an orthonormal set.

(ii) To show that Span(~q1, . . . ,~ql) = Span(~a1, . . . ,~a`), note that we already know Span(~p1, . . . ,~p`) =

Span(~a1, . . . ,~a`). Since {~q1, . . . ,~ql} is {~p1, . . . ,~p`} with all zero vectors removed, and zero vectors
don’t contribute to any span, we have that Span(~q1, . . . ,~ql) = Span(~p1, . . . ,~p`). Putting this together,
we have that Span(~q1, . . . ,~ql) = Span(~a1, . . . ,~a`) as desired.

Now suppose that {~a1, . . . ,~a`} is a linearly independent set of vectors.

(iii) To show that l = `, we show that no ~pi is a zero vector that gets discarded. Indeed, we know that
~pi =~0n if and only if~ai = Span(~a1, . . . ,~ai−1). But since {~a1, . . . ,~a`} is a linearly independent set, this
never happens, and thus ~pi 6=~0n for all i. Thus no discards happen, so l = `.

(iv) Since l = `, we have ~pi = ~qi for all i. Since we know Span(~p1, . . . ,~pi) = Span(~a1, . . . ,~ai) for each i, we
also have that Span(~q1, . . . ,~qi) = Span(~a1, . . . ,~ai) for each i, as desired.

A.6 Proof of Theorem 25

Proof of Theorem 25. By Theorem 21, we can let {~q1, . . . ,~q`} be the output of Gram-Schmidt when run on the
columns of A (the theorem invocation is to ensure that we receive ` vectors back). we have

~ai = projSpan(~a1,...,~ai)
(~ai) (105)

= projSpan(~q1,...,~qi)
(~ai) (106)

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 21



EECS 16B Note 13: Orthonormalization 2022-10-15 10:20:26-07:00

=
i

∑
k=1
〈~ai, ~qk〉~qk (107)

=
[
~q1 · · · ~qi

] 
〈~ai, ~q1〉

...
〈~ai, ~qi〉

 (108)

=
[
~q1 · · · ~qi ~qi+1 · · · ~q`

]


〈~ai, ~q1〉
...

〈~ai, ~qi〉
0
...
0


. (109)

Putting these columns together, we get

A =
[
~a1 · · · ~a`

]
(110)

=
[
~q1 · · · ~q`

]

〈~a1, ~q1〉 〈~a2, ~q1〉 · · · 〈~a`, ~q1〉

0 〈~a2, ~q2〉 · · · 〈~a`, ~q2〉
...

...
. . .

...
0 0 · · · 〈~a`, ~q`〉

 (111)

which is the desired decomposition.

Contributors:
• Druv Pai.
• Ashwin Vangipuram.
• Anant Sahai.
• Jennifer Shih.
• Rachel Hochman.
• Vasuki Narasimha Swamy.
• Steven Cao.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 22


	Overview and Motivation
	Orthogonality and Orthonormality
	Projections
	Gram-Schmidt Orthonormalization
	Consequences of Orthonormalization
	 The QR Decomposition
	 Application: Speeding Up Model Selection
	Examples
	Gram-Schmidt
	Extending Basis

	Longer Proofs
	Proof of thm:orthonormalmatricesidentity
	Proof of thm:orthonormalcolumnsreflectionrotation
	Proof of thm:lsorthonormalcolumns
	Proof of thm:orthogonalityprinciple
	Proof of thm:gscorrectness
	Proof of thm:qrdecomp


