
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Note 16: Minimum-Energy Control and Singular Value De-
composition

NOTE: This note is long. It contains a lot of information about the singular value decomposition, which
is one of the most important tools from linear algebra, and there are many perspectives to discuss it from.
As a result, you probably should not expect to cover the whole note at once.

1 Overview and Motivation

In Note 12, we discussed the problem of controllability and reachability in discrete-time. Reachability
analysis amounted to solving a linear system of the form

Ci?


~u[0]

...
~u[i? − 1]

 = ~x? − Ai?~x0 (1)

for the vector quantities ~u[0], . . . ,~u[i? − 1].
There could be many solutions to this vector system, and this translates to many choices for~u[0], . . . ,~u[i?−

1]. To pick the best one, we use the principle of minimum-energy control.

Key Idea 1 (Minimum-Energy Control)

The principle of minimum-energy control says that, when picking one of many choices of inputs, we
should pick the one which causes the system to consume the least energy.

This principle turns the problem of reachability into a constrained optimization problem. We discuss this
conversion in Section 2.

To solve this problem in the abstract, we then introduce the singular value decomposition (SVD), whose
properties are fleshed out in Sections 3 to 5.

Key Idea 2 (Singular Value Decomposition)

The SVD is a particular decomposition of a matrix A = UΣV>, where U and V are orthonormal, and Σ
is a (possibly non-square) diagonal matrix.a Each of U, Σ, V has important linear-algebraic properties.

aThis just means that only the diagonal entries of Σ, i.e., Σii , may be nonzero.

This decomposition will allow us to solve the minimum-energy control problem in Section 6.
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2 Minimum-Energy Control

As previously mentioned, in reachability analysis we try to solve the linear system

Ci?


~u[0]

...
~u[i? − 1]

 = ~x? − Ai?~x0 (2)

for the vector quantities~u[0], . . . ,~u[i?− 1]. Cleaning up notation, let us fix i?, let C := Ci? , let~z := ~x?− Ai?~x0,

and let ~w :=


~u[0]

...
~u[i? − 1]

. Then this linear system becomes

C~w = ~z. (3)

This system may have zero solutions, exactly one solution, or infinitely many solutions, depending on the
rank and shape of C. In some sense, we already have a good idea of what to do when the system has no
solutions or one solution.

• If the system C~w = ~z has one solution ~w0 for ~w, then ~x[i?] = ~x? if and only if our control inputs ~w are
exactly that solution ~w0.

• If the system C~w = ~z has no solutions in ~w, then there is no input ~w which makes~x[i?] = ~x?. Moreover,
‖~x[i?]−~x?‖ is minimized if our control inputs ~w are the least squares solution ~wLS = (C>C)−1C>~z.1

If we have infinitely many solutions for ~w, then any of them will make ~x[i?] = ~x?. We will distinguish
between them by their energy.

Definition 3 (Energy of an Input)

The energy of an input ~w =


~u[0]

...
~u[i? − 1]

 is its squared norm ‖~w‖2 = ∑i?−1
i=0 ‖~u[i]‖

2.

So now we pick an input ~w which minimizes ‖~w‖2 while still solving C~w = ~z, in essence solving the
optimization problem

min
~w

‖~w‖2 (4)

s.t. C~w = ~z. (5)

More generically, so-called minimum-norm problems of the form

min
~x

‖~x‖2 (6)

s.t. A~x =~b, (7)

1Here there is a caveat regarding invertibility of C>C. We omit this discussion now, since by the end of the note we will have a
more unified treatment of these solutions which does not require invertibility of C>C.
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are ubiquitous in engineering even outside control theory. In the subsequent sections, we will develop tools
to think about and solve these problems.

NOTE: From now on, we switch from the control-theoretic reachability notation (C, ~w,~z) to the generic
linear algebraic notation (A, ~x,~b). Note that this A is not necessarily the same as the control system state
transition matrix A.

3 Singular Value Decomposition: Existence, Computation

First, we will introduce the singular value decomposition (SVD) as a particular matrix factorization. We
will do this in stages of increasing levels of complexity and utility; each stage corresponds to a different form
of the SVD. We will show how each form of of the decomposition allows us to read off and manipulate the
linear algebraic properties of a matrix. Finally, we will give algorithms to compute each form of the SVD.

3.1 Preliminaries

In order to introduce the SVD, we introduce a result without which the SVD properties do not make sense.

Proposition 4 (Eigenvalues of A>A and AA>)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Then A>A ∈ Rn×n and AA> ∈ Rm×m are symmetric
matrices of rank r. Each has exactly r nonzero eigenvalues, which are real and positive.

The proof of Proposition 4 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.1. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

Now, we are in a position to present the SVD.

3.2 Outer Product Form of the SVD

Definition 5 (Outer Product Form of the SVD)

Let A ∈ Rm×n have rank r ≤ min{m, n}. An outer product form of an SVD of A is a decomposition

A =
r

∑
i=1

σi~ui~v>i (8)

where

(i) {~u1, . . . ,~ur} ⊆ Rm is an orthonormal set of vectors, and are so-called left singular vectors of A.

(ii) {~v1, . . . ,~vr} ⊆ Rn is an orthonormal set of vectors, and are so-called right singular vectors of A.

(iii) σ1 ≥ · · · ≥ σr > 0 are positive ordered scalars, and are so-called singular values of A.

While this form looks quite unassuming, it actually reveals several linear-algebraic properties of A, as
we will see in the following theorem.
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Theorem 6 (Linear Algebra of the Outer Product SVD)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Let A = ∑r
i=1 σi~ui~v>i be an outer product form SVD of A.

(i) {~u1, . . . ,~ur} is an orthonormal basis for Col(A).

(ii) {~v1, . . . ,~vr} is an orthonormal basis for Col
(

A>
)
.

(iii) For each i, 1 ≤ i ≤ r, we have (σ2
i ,~ui) is an eigenvalue-eigenvector pair for AA>.

(iv) For each i, 1 ≤ i ≤ r, we have (σ2
i ,~vi) is an eigenvalue-eigenvector pair for A>A.

(v) For each i, 1 ≤ i ≤ r, we have A~vi = σi~ui.

The proof of Theorem 6 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.2. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

Now, to prove that the SVD exists, we give an algorithm that constructs it, and prove that the algorithm’s
construction is valid.

Algorithm 7 Construction of the Outer Product Form of SVD

1: function OUTERPRODUCTSVD(A ∈ Rm×n)

2: r := rank(A)

3: (~v1, λ1), . . . , (~vn, λn) := ORTHONORMALEIGENVECTORSWITHSORTEDEIGENVALUES(A)

4: for i ∈ {1, . . . , r} do

5: σi :=
√

λi

6: ~ui :=
1
σi

A~vi

7: end for

8: return {~u1, . . . ,~ur}, {σ1, . . . , σr}, {~v1, . . . ,~vr}
9: end function

To clarify, in line 3, the eigenvalues are sorted such that λ1 ≥ · · · ≥ λn.

Theorem 8 (Correctness of Algorithm 7)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Let {~u1, . . . ,~ur}, {σ1, . . . , σr}, {~v1, . . . ,~vr} :=
OUTERPRODUCTSVD(A) be the output of the outer product SVD construction algorithm. Then
A = ∑r

i=1 σi~ui~v>i is an outer product SVD of A.

The proof of Theorem 8 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.3. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

3.3 Compact SVD

If we are not so comfortable with summations, we can instead condense the outer product form into matri-
ces. This is the so-called compact SVD.
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Definition 9 (Compact SVD)

Let A ∈ Rm×n have rank r ≤ min{m, n}. A compact SVD of A is a decomposition

A = UrΣrV>r (9)

where

(i) Ur ∈ Rm×r is a matrix with orthonormal columns, which are so-called left singular vectors of A.

(ii) Vr ∈ Rn×r is a matrix with orthonormal columns, which are so-called right singular vectors of A.

(iii) Σr ∈ Rr×r is a diagonal matrix whose diagonal entries σ1 ≥ · · · ≥ σr > 0 are positive ordered
real numbers, and are so-called singular values of A.

The compact SVD is connected to the outer product SVD by the following calculation.

[
~u1 · · · ~ur

] 
σ1

. . .

σr

 [~v1 · · · ~vr

]>
=
[
~u1 · · · ~ur

] 
σ1

. . .

σr



~v>1

...
~v>r

 (10)

=
[
~u1 · · · ~ur

] 
σ1~v>1

...
σr~v>r

 (11)

=
r

∑
i=1

σi~ui~v>i . (12)

We can show the same things as for the outer product form of the SVD; the proofs are essentially iden-
tical, just using matrix notation instead of summation notation.

Theorem 10 (Linear Algebra of the Compact SVD)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Let A = UrΣrV>r be an outer product form SVD of A.

(i) Col(Ur) = Col(A).

(ii) Col(Vr) = Col
(

A>
)
.

(iii) AA>Ur = UrΣ2
r .

(iv) A>AVr = VrΣ2
r .

(v) AVr = UrΣr.

Concept Check: Prove Theorem 10.
We can also use the same algorithm to construct the compact SVD.
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Algorithm 11 Construction of the Compact SVD

1: function COMPACTSVD(A ∈ Rm×n)

2: r := rank(A)

3: (~v1, λ1), . . . , (~vn, λn) := ORTHONORMALEIGENVECTORSWITHSORTEDEIGENVALUES(A)

4: for i ∈ {1, . . . , r} do

5: σi :=
√

λi

6: ~ui :=
1
σi

A~vi

7: end for

8: Ur :=
[
~u1 · · · ~ur

]
9: Vr :=

[
~v1 · · · ~vr

]

10: Σr :=


σ1

. . .

σr


11: return Ur, Σr, Vr

12: end function

To clarify, in line 3, the eigenvalues are sorted such that λ1 ≥ · · · ≥ λn.

Theorem 12 (Correctness of Algorithm 11)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Let Ur, Σr, Vr := COMPACTSVD(A) be the output of the
compact SVD construction algorithm. Then A = UrΣrV>r is a compact SVD of A.

Concept Check: Prove Theorem 12.

3.4 Full SVD

In the compact SVD, Ur and Vr are tall matrices with orthonormal columns. In contrast, Σr is a square
diagonal invertible matrix. We can trade off the niceness of Σr for additional niceness for Ur and Vr, by
extending Ur and Vr into fully square orthonormal matrices U ∈ Rm×m and V ∈ Rn×n while padding
Σr with 0s to get Σ ∈ Rm×n to make the matrix multiplication work out. Here U and V are square and
orthonormal, but Σ is no longer square or invertible. This is called the full SVD.

Definition 13 (Full SVD)

Let A ∈ Rm×n have rank r ≤ min{m, n}. A (full) SVD of A is a decomposition

A = UΣV> (13)

where

(i) U =
[
Ur Um−r

]
∈ Rm×m is a square orthonormal matrix whose columns are the so-called left

singular vectors of A; here Ur ∈ Rm×r and Um−r ∈ Rm×(m−r) are tall matrices with orthonormal
columns.

(ii) V =
[
Vr Vn−r

]
∈ Rn×n is a square orthonormal matrix whose columns are the so-called right
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singular vectors of A; here Vr ∈ Rn×r and Vn−r ∈ Rn×(n−r) are tall matrices with orthonormal
columns.

(iii) Σ =

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
∈ Rm×n is a non-square diagonal matrix whose diagonal entries

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σmin{m,n} = 0 are non-negative ordered real numbers, and are the
so-called singular values of A.

The full SVD is connected to the compact SVD via the following calculation.

UΣV> =
[
Ur Um−r

] [ Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

] [
Vr Vn−r

]>
(14)

=
[
Ur Um−r

] [ Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

] [
V>r

V>n−r

]
(15)

=
[
Ur Um−r

] ([ Σr

0(m−r)×r

]
V>r +

[
0r×(n−r)

0(m−r)×(n−r)

]
V>n−1

)
(16)

=
[
Ur Um−r

] [ Σr

0(m−r)×r

]
V>r (17)

=
[
Ur Um−r

] [ ΣrV>r
0(m−r)×n

]
(18)

= UrΣrV>r + Um−r0(m−r)×n (19)

= UrΣrV>r . (20)

Thus, the sub-matrices of a full SVD are a compact SVD.
We can show the same things as for the outer product and compact forms of the SVD, with further

interpretation of Um−r and Vn−r.

Theorem 14 (Linear Algebra of the Full SVD)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Let A = UΣV> be an SVD of A.

(i) Col(Ur) = Col(A).

(ii) Col(Vr) = Col
(

A>
)
.

(iii) Col(Um−r) = Null
(

A>
)
.

(iv) Col(Vn−r) = Null(A).

(v) AA> = UΣΣ>U>.

(vi) A>A = VΣ>ΣV>.

(vii) AVr = UrΣr.

The proof of Theorem 14 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.4. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

We can also use the same algorithm to construct the full SVD.
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Algorithm 15 Construction of the Full SVD

1: function FULLSVD(A ∈ Rm×n)

2: r := rank(A)

3: (~v1, λ1), . . . , (~vn, λn) := ORTHONORMALEIGENVECTORSWITHSORTEDEIGENVALUES(A)

4: for i ∈ {1, . . . , r} do

5: σi :=
√

λi

6: ~ui :=
1
σi

A~vi

7: end for

8: Ur :=
[
~u1 · · · ~ur

]
9: Vr :=

[
~v1 · · · ~vr

]

10: Σr :=


σ1

. . .

σr


11: U := EXTENDBASIS(Ur, Rm)

12: V := EXTENDBASIS(Vr, Rn)

13: Σ :=

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
14: return U, Σ, V

15: end function

To clarify, in line 3, the eigenvalues are sorted such that λ1 ≥ · · · ≥ λn.

Theorem 16 (Correctness of Algorithm 15)

Let A ∈ Rm×n have rank r ≤ min{m, n}. Let U, Σ, V := FULLSVD(A) be the output of the full SVD
construction algorithm. Then A = UΣV> is a full SVD of A.

The proof of Theorem 16 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.5. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

3.5 Comparison Between the SVD Forms

We identify weaknesses and strengths of using the SVD forms, so you can decide which one to use.

• Outer Product SVD:

– Weaknesses: The summation notation is messy and sometimes tedious to work with. Also, there
is no characterization of null spaces, as in the full SVD.

– Strengths: It is the most computationally efficient to construct by computer, and also saves the
most memory. It is also easier to construct by hand than the full SVD.

• Compact SVD:

– Weaknesses: The matrices Ur and Vr are not square, so they do not have an inverse. Also, there
is no characterization of null spaces, as in the full SVD.
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– Strengths: The matrix Σr is square and invertible. It is also easier to construct by hand than the
full SVD.

• Full SVD:

– Weaknesses: It is the most computationally intensive to compute, either by computer or by hand.
It requires running Gram-Schmidt twice to find Um−r and Vn−r. Also Σ is non-square and thus
not invertible.

– Strengths: The matrices U and V are square orthonormal, and thus invertible. There is also a
characterization of null spaces of A> and A as the column spaces of Um−r and Vn−r respectively.

When using the SVD to compute things, one potential rule to use is to use the compact SVD unless there
is a need to analyze null spaces, in which case the full SVD is essentially required.

4 Singular Value Decomposition: Geometric Properties

Let A = UΣV> be the SVD of some matrix A ∈ Rm×n.
Recall from Note 13 that for any vector ~x and any orthogonal matrix U that ‖U~x‖ = ‖~x‖. Thus we can

interpret multiplication by an orthonormal matrix as a combination of operations that don’t change length,
such as rotations and reflections.

Since Σr is diagonal with entries σ1, . . . , σr, multiplying a vector by Σ stretches the first entry of the
vector by σ1, the second entry by σ2, and so on.

Combining these observations, we interpret A~x as the composition of three operations:

1. V>~x which rotates ~x without changing its length.

2. ΣV>~x which stretches the resulting vector along each axis with the corresponding singular value,

3. UΣV>~x which again rotates the resulting vector without changing its length.

The following figure illustrates these three operations moving from the right to the left.

A = U Σ V>

~v1

~v2

~e1

~e2

σ1~e1

σ2~e2
σ1~u1

σ2~u2

Here as usual~e1,~e2 are the first and second standard basis vectors.
The geometric interpretation above reveals that σ1 is the largest amplification factor a vector can expe-

rience upon multiplication by A. More specifically, if ‖~x‖ ≤ 1 then ‖A~x‖ ≤ σ1. We achieve equality at
~x = ~v1, because then

‖A~x‖ =
∥∥∥UΣV>~v1

∥∥∥ = ‖UΣ~e1‖ = ‖σ1U~e1‖ = ‖σ1~u1‖ = σ1‖~u1‖ = σ1. (21)
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5 The SVD and Orthonormal Diagonalization

We attempt to compare the results of the full SVD to orthonormal diagonalization. The spectral theorem
says that, if A ∈ Rn×n is symmetric, then there exists some orthonormal square matrix P ∈ Rn×n and
diagonal matrix Λ ∈ Rn×n such that A = PΛP>. It turns out that (up to sign issues and ordering of the
singular values) that this is a valid SVD, and thus inherits the linear algebraic properties of the SVD.

Theorem 17 (Orthonormal Diagonalization is SVD)

Let A ∈ Rn×n be a square symmetric matrix with orthonormal diagonalization A = PΛP>, where

P =
[
~p1 · · · ~pn

]
Λ =


λ1

. . .

λn

 . (22)

Suppose that |λ1| ≥ · · · ≥ |λn|. Define

U =
[
~u1 · · · ~un

]
where ~ui =

~pi λi ≥ 0

−~pi λi < 0
(23)

Σ =


|λ1|

. . .

|λn|

 (24)

V = P. (25)

Then A = UΣV> is an SVD of A.

Concept Check: Prove Theorem 17.

6 Moore-Penrose Pseudoinverse

Now that we have the SVD, we may use it to define a pseudoinverse, i.e., an object which has some of the
properties of an inverse, but is defined for non-invertible matrices. This will help us solve least-squares and
least-norm problems.

Definition 18 (Moore-Penrose Psuedoinverse)

Suppose A ∈ Rm×n has rank r ≤ min{m, n}. Let A = UΣV> be an SVD of A. The Moore-Penrose
pseudoinverse of A is a matrix A† ∈ Rn×m given by

A† := VΣ†U> where Σ† =

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]†

=

[
Σ−1

r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
. (26)

Since Σr is a diagonal matrix ordered in non-increasing order, Σ−1
r is a diagonal matrix ordered in non-

decreasing order. Thus VΣ†U> is not an SVD of A†, but one can sort the diagonal entries of Σ† and the
corresponding columns of U and V in order to make it an SVD of A†.

We can also compactify this pseudoinverse, using the same derivation as that of the compact SVD.
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Proposition 19 (Compact Moore-Penrose Pseudoinverse)

Suppose A ∈ Rm×n has rank r ≤ min{m, n}. Let A = UrΣrV>r be a compact SVD of A. Then A’s
pseudoinverse A† ∈ Rn×m can be expressed in terms of the compact SVD as

A† = VrΣ−1
r U>r . (27)

We also have some simple identities of the pseudoinverse.

Proposition 20 (Pseudoinverse Identities)

(i) If A is invertible, i.e., A−1 exists, then A† = A−1 (inverse is pseudoinverse);

(ii) (A†)† = A (taking pseudoinverse twice does nothing);

(iii) (A>)† = (A†)> (pseudoinverse commutes with transpose);

(iv) For α 6= 0, (αA)† = α−1 A† (scalar distributivity);

(v) AA† A = A (weak left inverse property);

(vi) A† AA† = A† (weak right inverse property);

(vii) AA† = UrU>r (AA† is projection onto Col(A));

(viii) A† A = VrV>r (A† A is projection onto Col
(

A>
)
).

Note that all these properties hold for the regular inverse, as well.
Concept Check: Prove Proposition 20. The proofs should entirely be writing out A and A† in terms of

the SVD of A, then simplifying the given expression as much as possible.
Now we can get onto our main theorem of the pseudoinverse, which is one of many reasons we should

care about it.

Theorem 21 (Pseudoinverse Solves Least-Norm Least-Squares)

Let A ∈ Rm×n have rank r ≤ min{m, n}, and let~b ∈ Rm. Let S be the set of least squares solutions:a

S := argmin
~z∈Rn

∥∥∥A~z−~b
∥∥∥2

. (28)

The solution of the optimization problem

min
~x∈S
‖~x‖2 (29)

is unique and given by ~x? = A†~b.

aNote that even though projCol(A)

(
~b
)

is unique, the~z such that A~z = projCol(A)

(
~b
)

is not necessarily unique, so this set S
may have more than one element.

The proof of Theorem 21 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix B.1. We fully expect you to read the proof and understand it. It is completely in-scope for the course.
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Now this theorem seems a little abstract, but it has corollaries which are grounded in solving the least-
squares and least-norm problems we are familiar with.

Corollary 22 (Pseudoinverse Solves Least-Squares)

Let A ∈ Rm×n with m ≥ n have full column rank, and let~b ∈ Rm.

(i) The solution to the least-squares problem

min
~x∈Rn

∥∥∥A~x−~b
∥∥∥2

(30)

is given by ~x?LS = A†~b.

(ii) The pseudoinverse A† has the formula A† = (A>A)−1 A>.

Proof. Using the notation of Theorem 21, if A has full column rank then S has exactly one element, which
is the least squares solution ~x?LS = (A>A)−1 A>~b. Hence A† = (A>A)−1 A> as desired.

Corollary 23 (Pseudoinverse Solves Least-Norm)

Let A ∈ Rm×n with m ≤ n have full row rank, and let~b ∈ Rm.

(i) The solution to the least-norm problem

min
~x∈Rn

‖~x‖2 (31)

s.t. A~x =~b (32)

is given by ~x?LN = A†~b.

(ii) The pseudoinverse A† has the formula A† = A>(AA>)−1.

Proof. Using the notation of Theorem 21, if A has full row rank then S has infinitely many elements ~x such
that

∥∥∥A~x−~b
∥∥∥ = 0, i.e., A~x =~b. To show that A† = A>(AA>)−1, we compute

A>(AA>)−1 = (UΣV>)>((UΣV>)(UΣV>)>)−1 (33)

= VΣ>U>
(

UΣV>VΣ>U>
)−1

(34)

= VΣ>U>U
(

ΣΣ>
)−1

U> (35)

= VΣ>
(

ΣΣ>
)−1

U> (36)

= VΣ†U> (37)

= A† (38)

as desired.

7 Examples
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7.1 Example SVD Interpretation

Suppose we have an m× n matrix A, of rank r, that contains the ratings of m viewers for n movies. Write

A = UΣV> =
r

∑
i=1

σi~ui~v>i . (39)

We can interpret each rank 1 matrix σi~ui~v>i to be due to a particular attribute, e.g., comedy, action, sci-fi, or
romance content. Then σi determines how strongly the ratings depend on the ith attribute; the entries of ~v>i
score each movie with respect to this attribute, and the entries of ~ui evaluate how much each viewer cares
about this particular attribute. Interestingly, the (r + 1)th attributes onwards don’t influence the ratings,
according to our analysis.

7.2 Numerical Example 1

Let’s find the SVD for

A =

[
4 4
−3 3

]
. (40)

We find the SVD for A> first and then take the transpose. We calculate

(A>)>(A>) = AA> =

[
4 4
−3 3

] [
4 −3
4 3

]
=

[
32 0
0 18

]
. (41)

This happens to be diagonal, so we can read off the eigenvalues:

λ1 = 32 λ2 = 18 (42)

We can select the orthonormal eigenvectors:

~u1 =

[
1
0

]
~u2 =

[
0
1

]
. (43)

The singular values are

σ1 =
√

λ1 =
√

32 = 4
√

2 σ2 =
√

λ2 =
√

18 = 3
√

2. (44)

Then to find ~v1,~v2, we do

~v1 =
A>~u1

σ1
=

1
4
√

2

[
4
4

]
=

[
1/
√

2
1/
√

2

]
(45)

~v2 =
A>~u2

σ2
=

1
3
√

2

[
−3
3

]
=

[
−1/
√

2
1/
√

2

]
. (46)

Thus our SVD is

A = UΣV> =

[
1 0
0 1

] [
4
√

2 0
0 3

√
2

] [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]
. (47)

Note that we can change the signs of ~u1,~u2 and they are still orthonormal eigenvectors, and produce a
valid SVD. However, changing the sign of ~ui requires us to change the sign of ~vi = A>~ui, so therefore the
product of ~ui~v>i remains unchanged.

Another source of non-uniqueness arises when we have repeated singular values, as seen in the next
example.
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7.3 Numerical Example 2.

We want to find an SVD for

A =

[
1 0
0 −1

]
. (48)

Again, we find the SVD for A> and then take the transpose. Note that AA> = I2, which has repeated eigen-
values at λ1 = λ2 = 1. In particular, any pair of orthonormal vectors is a set of orthonormal eigenvectors
for I2 = AA>. We can parameterize all such pairs as

~u1 =

[
cos(θ)
sin(θ)

]
~u2 =

[
− sin(θ)
cos(θ)

]
(49)

where θ is a free parameter. Since σ1 = σ2 = 1, we obtain

~v1 =
A>~u1

σ1
=

[
cos(θ)
− sin(θ)

]
~v2 =

A>~u2

σ2
=

[
− sin(θ)
− cos(θ)

]
. (50)

Thus an SVD is

A = UΣV> =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
1 0
0 1

] [
cos(θ) − sin(θ)
− sin(θ) − cos(θ)

]
(51)

for any value of θ. Thus this matrix has infinite valid SVDs, one for each value of θ in the interval [0, 2π).

7.4 Long-Form Example

In this example we review discretization, controllability, and minimum-norm solutions. Consider the
model of a car moving in a lane

dp(t)
dt

= v(t) (52)

dv(t)
dt

=
1

RM
u(t) (53)

where p(t) is position, v(t) is velocity, u(t) is wheel torque, R is wheel radius, and M is mass.
First we discretize this continuous-time model. If we apply the constant input u(t) from ud[i] from

t = i∆ to t = (i + 1)∆, then by integration

p(t) = pd[i] + (t− i∆)vd[i] +
1
2
(t− i∆)2 1

RM
ud[i] (54)

v(t) = vd[i] + (t− i∆)
1

RM
ud[i] (55)

for t ∈ [i∆, (i + 1)∆). In particular, at t = (i + 1)∆,

pd[i + 1] = p((i + 1)∆) = pd[i] + ∆vd[i] +
∆2

2RM
ud[i] (56)

vd[i + 1] = v((i + 1)∆) = vd[i] +
∆

RM
ud[i]. (57)

Putting these equations in matrix/vector form, we get[
pd[i + 1]
vd[i + 1]

]
=

[
1 ∆
0 1

]
︸ ︷︷ ︸

:=A

[
pd[i]
vd[i]

]
+

1
RM

[
1
2 ∆2

∆

]
︸ ︷︷ ︸

:=~b

ud[i] (58)
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Now suppose the vehicle is at rest with pd[0] = vd[0] = 0 and the goal is to reach a target position p? and
stop there (i.e., v? = 0). From reachability analysis (Note 12), if we can find a sequence ud[0], ud[1], . . . , ud[`−
1] such that

[
p?

0

]
=
[

A`−1~b · · · A~b ~b
]


ud[0]
...

ud[`− 2]
ud[`− 1]

 (59)

then at time t = `∆, i.e., in ` timesteps we reach the desired state.
Since we have n = 2 state variables the controllability test we learned checks whether C` with ` = 2

spans R2. This is indeed the case, since

C2 =
[

A~b ~b
]
=

1
RM

[
3
2 ∆2 1

2 ∆2

∆ ∆

]
(60)

has linearly independent columns.
Although this test suggests we can reach the target state in two steps, the resulting values of ud[0] and

ud[1] will likely exceed physical limits. If we take the values RM = 5000 kg m, T = 0.1 s, p? = 1000 m, then[
ud[0]
ud[1]

]
= C−1

2

[
p?

0

]
=

 5× 108 kg m2

s2

−5× 108 kg m2

s2

 (61)

which exceeds the torque and breaking limits of a typical car by 5 orders of magnitude.
Therefore, in practice we need to select a sufficiently large number of time steps `. This leads to a

wide controllability matrix C` and allows for infinitely many input sequences that reach our target state.
Among them, we can select the minimum norm solution so we spend the least control energy. Using the
minimum-norm formula 

ud[0]
...

ud[`− 2]
ud[`− 1]

 = C>` (C`C>` )
−1

[
p?

0

]
(62)

and some algebra, one obtains the input sequence

ud[i] =
6RM(`− 1− 2i)

∆2`(`2 − 1)
p? i ∈ {0, 1, . . . , `− 1}. (63)

In the plot below we show this input sequence, as well as the resulting velocity and position profiles for
RM = 5000 kg m, p? = 1000 m, ∆ = 0.1 s, and ` = 1200. With these parameters we allow `∆ = 120 s (2
minutes) to travel 1 km. Note that the vehicle accelerates in the first half of this period and decelerates in
the second half, reaching the maximum velocity 12.5 m

s (≈ 28 mph) in the middle. The acceleration and
deceleration are hardest at the very beginning and at the very end, respectively. The corresponding torque
is within a physically reasonable range, [−2000, 2000]N m.
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Input Torque (N m)

Velocity ( m
s )

Position (m)

Figure 1: The minimum norm input torque sequence, and the resulting velocity and position profiles, for RM =

5000 kg m, p? = 1000 m, ∆ = 0.1 s, and ` = 1200. The horizontal axis is time, which ranges from 0 to `∆ = 120 s. The
vehicle accelerates in the first half of this period and decelerates in the second half, reaching the maximum velocity
12.5 m

s in the middle.

8 Final Comments

In this note, we discussed the problem of minimum energy control, then turned it into a more abstract
least-norm problem. We introduced the singular value decomposition, proved existence and uniqueness,
and showed its applicability to the least-norm and least-squares problems via the Moore-Penrose pseudoin-
verse.

The SVD is a very powerful method to do efficient and expressive data analysis. We will see more
applications of this flavor in the next note.
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A Proofs for Section 3

A.1 Proof of Proposition 4

Proof of Proposition 4. We have
(A>A)> = (A)>(A>)> = A>A (64)

so (A>A)> = A>A, and thus A>A is symmetric.
To show that rank(A>A) = r, note that in EECS 16A Note 23, we showed that Null(A) = Null

(
A>A

)
,

and in particular dim(Null(A)) = dim
(
Null

(
A>A

))
. By the Rank-Nullity theorem (EECS 16A Note 8)

applied to A, we have that

r = rank(A) = n− dim (Null(A)) = n− dim
(

Null
(

A>A
))

= rank
(

A>A
)

. (65)

Thus rank(A>A) = r.
Now we show that A>A has exactly r nonzero eigenvalues. Indeed,

dim
(

Null
(

A>A
))

= n− rank
(

A>A
)
= n− r. (66)

Thus A>A has an (n− r)-dimensional null space, corresponding to an eigenvalue 0 with geometric multi-
plicity mg

A>A(0) = n− r. By the Spectral Theorem (Note 15), and the fact that A>A is symmetric, we know
that A>A is diagonalizable. Again by Note 15, we know that for a diagonalizable matrix, the geometric and
algebraic multiplicities of each eigenvalue agree, i.e., ma

A>A(λ) = mg
A>A(λ) for each eigenvalue λ of A>A.

So ma
A>A(0) = n− r. Since ∑λ ma

A>A(λ) = n, this implies that A>A has r nonzero eigenvalues.
We now show that all nonzero eigenvalues of A>A are real and positive. Since A>A is symmetric, the

Spectral Theorem says that A>A has reaal eigenvalues. It remains to show that they are all non-negative.
Lett λ be a nonzero eigenvalue. Let λ be a nonzero eigenvalue of A>A with eigenvector ~v. Then

A>A~v = λ~v (67)

~v>A>A~v = λ~v>~v (68)

〈A~v, A~v〉 = λ 〈~v, ~v〉 (69)

‖A~v‖2 = λ‖~v‖2. (70)

We know that λ is nonzero, and ~v is nonzero so ‖~v‖ > 0. Hence ‖A~v‖ is nonzero and thus positive. Thus

λ =
‖A~v‖2

‖~v‖2 (71)

is the quotient of positive numbers and thus positive.
Now let B := A> and note that AA> = (A>)>(A>) = B>B. Thus applying the same calculation to the

rank-r matrix B = A> obtains that AA> is symmetric, that rank(AA>) = r, and that AA> has exactly r
nonzero eigenvalues, which are real and positive.

A.2 Proof of Theorem 6

Proof of Theorem 6.
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(i) Since {~u1, . . . ,~ur} is already assumed to be orthonormal, it is left to show that this set spans Col(A).
Indeed, for ~x ∈ Rn, we have

A~x =

(
r

∑
i=1

σi~ui~v>i

)
~x (72)

=
r

∑
i=1

σi~ui~v>i ~x (73)

=
r

∑
i=1

σi 〈~x, ~vi〉~ui. (74)

This is a linear combination of the ~ui, so we have Col(A) ⊆ Span(~u1, . . . ,~ur). Since dim(Col(A)) = r
and dim(Span(~u1, . . . ,~ur)) = r, they are the same dimension and thus are equal. Hence Col(A) =

Span(~u1, . . . ,~ur) as desired.

(ii) Since A> = ∑r
i=1 σi~vi~u>i , applying part (i) to this matrix obtains that Span(~v1, . . . ,~vr) = Col

(
A>
)
.

(iii) We have

AA>~uk =

(
r

∑
i=1

σi~ui~v>i

)(
r

∑
j=1

σi~vi~u>i

)
~vk (75)

=
r

∑
i=1

r

∑
j=1

σiσj~ui~v>i ~vj~u>j ~uk (76)

=
r

∑
i=1

r

∑
j=1

σiσj
〈
~vj
∣∣~vi
〉 〈

~uk
∣∣~uj
〉
~ui (77)

= σ2
k~uk (78)

as desired; the mass cancellation is due to orthonormality.

(iv) We have

A>A~vk =

(
r

∑
i=1

σi~vi~u>i

)(
r

∑
i=1

σi~ui~v>i

)
~vk (79)

=
r

∑
i=1

r

∑
j=1

σiσjviu>i ~uj~v>i ~vk (80)

=
r

∑
i=1

r

∑
j=1

σiσj
〈
~uj, ~ui

〉
〈~vk, ~vi〉 vi (81)

= σ2
k~vk (82)

where again the mass cancellation is due to orthonormality.

(v) We have

A~vk =

(
r

∑
i=1

σi~ui~v>i

)
~vk (83)

=
r

∑
i=1

σi~ui~v>i ~vk (84)
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=
r

∑
i=1

σi 〈~vk, ~vi〉~ui (85)

= σk~uk (86)

where again the mass cancellation is due to orthonormality.

A.3 Proof of Theorem 8

Proof of Theorem 8. We first claim that σ1 ≥ · · · ≥ σr > 0 are real. Indeed, by Proposition 4, the top r
eigenvalues λ1 ≥ · · · ≥ λr > 0 of A>A are real and positive, so their square roots σ1 ≥ · · · ≥ σr > 0 are
real and positive.

Now we claim that {~v1, . . . ,~vr} is an orthonormal set. By the Spectral Theorem, the eigenvalues of
A>A are real and thus may be ordered. Furthermore, there is an orthonormal basis of Rn consisting of
eigenvectors ~v1, . . . ,~vn of A, ordered by the eigenvalues. Thus, the construction in Line 3 is valid and
produces orthonormal ~v1, . . . ,~vn, and so {~v1, . . . ,~vr} is an orthonormal set.

Now we claim that {~u1, . . . ,~ur} is an orthonormal set. Let 1 ≤ i < j ≤ r. Then

〈
~ui, ~uj

〉
=

〈
1
σi

A~vi,
1
σj

A~vj

〉
(87)

=
1

σiσj

〈
A~vi, A~vj

〉
(88)

=
1

σiσj

〈
A>A~vi, ~vj

〉
(89)

=
1

σiσj

〈
σi~vi, ~vj

〉
(90)

=
1
σj

〈
~vi, ~vj

〉
(91)

= 0 (92)

by orthonormality of the ~vi.
Now let 1 ≤ i ≤ r. Then

‖~ui‖2 = ‖A~vi‖2 (93)

=
1
σ2

i
‖A~vi‖2 (94)

=
1
σ2

i
〈A~vi, A~vi〉 (95)

=
1
σ2

i

〈
A>A~vi, ~vi

〉
(96)

=
1
σ2

i
〈λi~vi, ~vi〉 (97)

=
λi

σ2
i
〈~vi, ~vi〉 (98)

=
σ2

i
σ2

i
‖~vi‖2 (99)
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= ‖~vi‖2 (100)

= 1. (101)

Thus {~u1, . . . ,~ur} is an orthonormal set.
Finally, we claim that A = ∑r

i=1 σi~ui~v>i . This equality holds if and only if, for every ~x ∈ Rn, we have
A~x =

(
∑r

i=1 σi~ui~v>i
)
. We show the latter condition.

Since {~v1, . . . ,~vn} is an orthonormal basis of Rn, we may let~x = ∑n
i=1 αi~vi for some constants α1, . . . , αn ∈

R. The eigenvectors corresponding to the 0 eigenvalues of A>A — that is, ~vr+1, . . . ,~vn — are an orthonor-
mal basis for Null

(
A>A

)
. We know that Null

(
A>A

)
= Null(A), so {~vr+1, . . . ,~vn} is an orthonormal basis

for Null(A). Thus A~vr+1 = · · · = A~vn =~0m. With this, we can compute(
r

∑
i=1

σi~ui~v>i

)
~x =

(
r

∑
i=1

σi~ui~v>i

)(
n

∑
i=1

αi~vi

)
(102)

=
r

∑
i=1

n

∑
j=1

σiαj~ui~v>i ~vj (103)

=
r

∑
i=1

n

∑
j=1

σiαj
〈
~vj, ~vi

〉
~ui (104)

=
r

∑
i=1

αiσi~ui (105)

=
r

∑
i=1

αi A~vi (106)

=
n

∑
i=1

αi A~vi (107)

= A

(
n

∑
i=1

αi~vi

)
(108)

= A~x. (109)

Thus A = ∑r
i=1 σi~ui~v>i as desired.

A.4 Proof of Theorem 14

Proof of Theorem 14.

(i) Follows from the equivalence of compact and full SVDs: A = UΣV> = UrΣrV>r .

(ii) Follows from the equivalence of compact and full SVDs: A = UΣV> = UrΣrV>r .

(iii) Since {~u1, . . . ,~um} is the orthonormal set of columns of U, we have that {~u1, . . . ,~ur} and {~ur+1, . . . ,~um}
are orthonormal bases for orthogonal subspaces. Since Span(~u1, . . . ,~ur) = Col(A), we are left to show
that Null

(
A>
)

is exactly the set of vectors orthogonal to Col(A). Indeed, let ~y ∈ Rm. Then

〈~y|~z〉 = 0 for all~z ∈ Col(A) (110)

⇐⇒ 〈~y|A~x〉 = 0 for all ~x ∈ Rn (111)

⇐⇒
〈

A>~y
∣∣∣~x〉 = 0 for all ~x ∈ Rn (112)

⇐⇒ A>~y =~0n (113)
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⇐⇒ ~y ∈ Null
(

A>
)

. (114)

Thus Null
(

A>
)
= Span(~ur+1, . . . ,~um).

(iv) Follows from applying (iii) to the SVD of A>, i.e., A> = VΣU>.

(v) We have

AA> = (UΣV>)(UΣV>)> (115)

= UΣV>VΣU> (116)

= UΣΣU>. (117)

(vi) We have

A>A = (UΣV>)>(UΣV>) (118)

= VΣ>U>UΣV> (119)

= VΣ>ΣV>. (120)

(vii) Follows from the equivalence of compact and full SVDs: A = UΣV> = UrΣrV>r .

A.5 Proof of Theorem 16

Proof of Theorem 16. The only thing that has not already been shown from the proof of correctness of the
outer product SVD algorithm is that U and V are square orthonormal matrices. But this is straightforward
from Gram-Schmidt.

B Proofs for Section 6

B.1 Proof of Theorem 21

Proof of Theorem 21. We first show that ~x? ∈ S, then that it is the unique member of S with minimum norm.
From the Orthogonality Principle of Note 13, we have that ~x ∈ S if and only if A~x−~b is orthogonal to

Col(A). This means that ~x ∈ S if and only if, for any ~w ∈ Rn we have that
〈

A~x−~b, A~w
〉

= 0. This is

equivalent to saying that, ~x ∈ S if and only if, for any ~w ∈ Rn we have that
〈

A>(A~x−~b), ~w
〉
= 0. Since

the left-hand argument of the inner product is not dependent on ~w, ~x ∈ S if and only if A>(A~x−~b) = ~0n

(the so-called normal equations). Algebraically this is the equation

A>A~x = A>~b. (121)

We verify that ~x? = A†~b fulfills this equation. Indeed,

A>A~x? = A>AA†~b (122)

= (UrΣrV>r )>(UrΣrV>r )(VrΣ−1
r U>r )~b (123)

= VrΣrU>r UrΣrV>r VrΣ−1
r U>r ~b (124)
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= VrΣrU>r ~b (125)

= (UrΣrV>r )>~b (126)

= A>~b. (127)

Thus ~x? fulfills the normal equations, so ~x? ∈ S.
Now because the projection is unique, for any ~x ∈ S, we have that A~x = projCol(A)

(
~b
)

is independent
of ~x. Suppose that there are two solutions ~x1,~x2 ∈ S. Then since

A~x1 = A~x2 = projCol(A)

(
~b
)

(128)

we see that
A(~x1 −~x2) = A~x1 − A~x2 = projCol(A)

(
~b
)
− projCol(A)

(
~b
)
=~0m. (129)

Thus ~x1 − ~x2 ∈ Null(A). This implies that, for any ~x ∈ S, every other vector ~y ∈ S can be written as
~y = ~x +~z for~z ∈ Null(A), and further there is exactly one ~x0 ∈ S such that ~x0 is orthogonal to Null(A).2

For this ~x0 and any ~x ∈ S, we would have

‖x‖2 = 〈~x, ~x〉 (130)

= 〈~x0 + (~x−~x0), ~x0 + (~x−~x0)〉 (131)

= 〈~x0, ~x0〉+ 〈~x0, ~x−~x0〉+ 〈~x−~x0, ~x0〉+ 〈~x−~x0, ~x−~x0〉 (132)

= ‖~x0‖2 + 2 〈~x0, ~x−~x0〉︸ ︷︷ ︸
=0

+‖~x−~x0‖2 (133)

= ‖~x0‖2 + ‖~x−~x0‖2 (134)

≥ ‖~x0‖2 (135)

with equality if and only if ~x = ~x0. Here 〈~x0, ~x−~x0〉 = 0 due to the fact that ~x − ~x0 ∈ Null(A) and ~x0 is
orthogonal to Null(A). Thus ~x0 is the unique solution to the optimization problem

min
~x∈S
‖~x‖2. (136)

We need to show that ~x0 := ~x?. Recall that we defined ~x0 as the unique element of S which is orthogonal to
Null(A). So we need to show that ~x? = A†~b is orthogonal to Null(A). Indeed,

Col
(

A†
)
= Col

(
VrΣ−1

r U>r
)
⊆ Col(Vr) = Col

(
A>
)

. (137)

We have shown in the proof of Theorem 14 that Col
(

A>
)

is orthogonal to Null(A). Since A†~b ∈ Col
(

A†),
we have A†~b ∈ Col

(
A>
)

and thus~x? is orthogonal to Null(A). Thus~x0 := ~x? and the proof is complete.
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2For any ~x ∈ S, let ~x0 := ~x− projNull(A)(~x). Then A~x = A~x0 so ~x0 ∈ S, so there exists an ~x0 ∈ S which is orthogonal to Null(A).
And for any ~x ∈ S \ {~x0}, we have that ~x−~x0 ∈ Null(A) and is nonzero, so ~x is not orthogonal to ~x−~x0. Thus ~x is not orthogonal to
Null(A), and so ~x0 is the unique element of S which is orthogonal to Null(A).
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