

1. System identification by means of least squares

Working through this question will help you understand better how we can use experimental data taken from a (presumably) linear system to learn a discrete-time linear model for it using the least-squares techniques you learned in 16A. You will later do this in lab for your robot car.

As you were told in 16A, least-squares and its variants are not just the basic workhorses of machine learning in practice, they are play a conceptually central place in our understanding of machine learning well beyond least-squares.

Throughout this question, you should consider measurements to have been taken from one long trace through time.

(a) Consider the scalar discrete-time system
$$x[i+1] = ax[i] + bu[i] + w[i]$$
 (1)

Where the scalar state at time i is x[i], the input applied at time i is u[i] and w[i] represents some external disturbance that also participated at time i.

Assume that you have measurements for the states x[i] from i = 0 to m and also measurements for the controls u[i] from i = 0 to m - 1.

Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters a and b.

Given:
$$X[0]$$
, $X(1)$, ..., $X[m-1]$, $X[m]$
 $M[0]$, $M[1]$, ..., $M[m-1]$

System: $X[i+1] = aX[i] + bu[i] + w[i]$
 $X[i] = aX[i] + bu[i] + w[i]$
 $X[i] = aX[i] + bu[i] + w[i]$
 $X[m] = aX[m-1] + bu[m-1] + w[m-1]$

Least Spaces

 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$
 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$
 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$
 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$
 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$
 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$
 $\begin{bmatrix} X[i] \\ X[i] \end{bmatrix} = \begin{bmatrix} X[i] \\ X[i] \end{bmatrix}$

(b) What if there were now two distinct scalar inputs to a scalar system

$$x[i+1] = ax[i] + b_1u_1[i] + b_2u_2[i] + w[i]$$
(2)

and that we have measurements as before, but now also for both of the control inputs.

Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters a, b_1, b_2 .

- (c) What could go wrong in the previous case? For what kind of inputs would make least-squares fail to give you the parameters you want?
- (d) Returning to the scalar case with only one input, what could go wrong? When would you be unable to use least-squares to get the parameters you want?

2. Discrete time system responses

We have a system $x[k+1] = \lambda x[k]$. For each λ value plotted on the real-imaginary axis, sketch x[k] with an initial condition of x[0] = 1. Determine if each system is stable.

X[1] = -1,5 ·)

 $\times (3) = (-1.5)^3 - 1$

Manginery Stable System C, $\lambda = -0.5$

Stable

System D. 1=0.5

Stable

System E, 1=1

Marjinny Starble

System F, 1=1.5

unstable

3. Stability Examples and Counterexamples

(a) Consider the circuit below with $R = 1\Omega$, C = 0.5F, and $u(t) = \cos(t)$. Furthermore assume that v(0) = 0 (that the capacitor is initially discharged).

This circuit can be modeled by the differential equation

$$\frac{d}{dt}v(t) = -2v(t) + 2u(t) \tag{4}$$

Show that the differential equation is always stable. Consider what this means in the physical circuit.

Hint: try letting - 2V(+)+2M(+)>0

(t) V < (t) N

一 < いけ) <

(b) (Consider the discrete system	
		(5)
	with $x[0]=0$.	
	Is the system stable or unstable? If unstable, find a bounded input sequence $u[k]$ that causes the syst to "blow up". If unstable, is there still a (non-trivial) bounded input sequence that does not cause	
	system to "blow up"?	-
	Imstable!	
	blow up: M(k) = 1, 0, 0,	
	blow up: Mtc) = 1, 0, 0,	
	1, 2, 4, 8,	
	Starble output: Mtk) = 1, -2, 0,	
	X(0)=0	
	· · · · · · · · · · · · · · · · · · ·	
	2X[k] + ntk] = 1,0,0,0,0	