
1/26/2022

1

An Overview of SystemVerilog
for Design and Verification

Vighnesh Iyer, EECS 251B

Intention of this Lecture

● We use Chisel for all RTL written at Berkeley
○ Why bother with SystemVerilog?

● SystemVerilog is the de-facto industry standard
○ SV/UVM is used for (nearly) all industry verification
○ You will be asked about it in interviews

● Understand basic dynamic verification concepts
● Understand existing SystemVerilog code
● Inspire extensions to HDLs

Universal Verification Methodology (UVM)
is a standard maintained by Accellera
https://www.accellera.org/downloads/standards/uvm

SystemVerilog (SV) is an IEEE Standard 1800
https://standards.ieee.org/project/1800.html

1

2

https://www.accellera.org/downloads/standards/uvm
https://standards.ieee.org/project/1800.html

1/26/2022

2

What is SystemVerilog

● IEEE 1800 standard
● A massive extension of Verilog with new constructs for design and verification

○ New data types (for RTL and testbenches)
○ OOP support
○ Constrained random API
○ Specification language
○ Coverage specification API

● Fixing warts in Verilog
○ Synthesis - simulation mismatch
○ Verilog was initially developed as a simulation language; synthesis emerged later

SystemVerilog for Design

3

4

1/26/2022

3

Ending the Wire vs. Reg Confusion

Verilog-2005

● wire for LHS of assign statements
● reg for LHS of code inside always @

blocks

Both: the containing statement determines if the net is the
direct output of a register or combinational logic

SystemVerilog

● logic for LHS of assign statements
● logic for LHS of code inside always @

blocks

wire a;
reg b, c;
assign a = ____;
always @(*) b = ____;
always @(posedge clk) c <= ____;

logic a, b, c;
assign a = ____;
always @(*) b = ____;
always @(posedge clk) c <= ____;

Signal Your Intent With Specific Always Blocks

Verilog-2005

Coding style is used to verify that c infers
as a register and b as comb logic

SystemVerilog

always @(*) begin
if (x) b = a
else b = !a;

end

always @(posedge clk) begin
if (x) c <= !a;
else c <= a;

end

always_comb begin
if (x) b = a
else b = !a;

end

always_ff @(posedge clk) begin
if (x) c <= !a;
else c <= a;

end

New always_comb and always_ff
statements for safety

5

6

1/26/2022

4

Autoconnect (Implicit Port Connections)

● How many times have you done this?

module mod (input a, b, output c); endmodule

reg a, b; wire c;
mod x (.a(a), .b(b), .c(c));

● If the net names and their corresponding port names match, there’s a shortcut
mod x (.a, .b, .c);

● In SystemVerilog, there’s a concise shortcut

mod x (.*);

● Implicit connections only work if port names and widths match

Use Enums Over localparams

Verilog-2005 SystemVerilog

localparam STATE_IDLE = 2’b00;
localparam STATE_A = 2’b01;
localparam STATE_B = 2’b10;
reg [1:0] state;

always @(posedge clk) begin
case (state)

STATE_IDLE: state <= STATE_A;
STATE_A: state <= STATE_B;
STATE_B: state <= STATE_IDLE;

endcase
end

typedef enum logic[1:0] {
STATE_IDLE, STATE_A, STATE_B

} state_t;
state_t state;

always_ff @(posedge clk) begin
case (state)

STATE_IDLE: state <= STATE_A
STATE_A: state <= STATE_B;
STATE_B: state <= STATE_IDLE;

endcase
end

Enums automatically check whether all values can fit. Can
be used as a net type. Add semantic meaning to constants.

7

8

1/26/2022

5

More on Enums

● Common to use enums for attaching semantic strings to values

typedef enum logic {
READ, WRITE

} mem_op_t;

module memory (
input [4:0] addr,
input mem_op_t op,
input [31:0] din,
output logic [31:0] dout

);

● Note that input/output net types are by default ‘wire’, you can override them as
logic

Even More on Enums

● You can force enum values to be associated with a specific value
○ To help match up literals for a port that doesn’t use enums

typedef enum logic [1:0] { STATE_IDLE=3, STATE_A=2, STATE_B=1 } state_t

● You can generate N enum values without typing them out

typedef enum logic [1:0] { STATE[3] } state_t
// STATE0 = 0, STATE1 = 1, STATE2 = 2

● You can generate N enum values in a particular range

typedef enum logic [1:0] { STATE[3:5] } state_t
// STATE3 = 0, STATE4 = 1, STATE5 = 2

9

10

1/26/2022

6

Even More on Enums

● Enums are a first-class datatype in SystemVerilog
○ Enum instances have native functions defined on them

■ next(): next value from current value
■ prev(): previous value from current value
■ num(): number of elements in enum
■ name(): returns a string with the enum’s name (useful for printing using $display)

● They are weakly typechecked
○ You can’t assign a binary literal to a enum type net

● They show up in waveforms
○ No more confusion trying to correlate literals to a semantic name

Multidimensional Packed Arrays

● Packed dimensions are to the left of the variable name
○ Packed dimensions are contiguous (e.g. logic [7:0] a)

● Unpacked dimensions are to the right of the variable name
○ Unpacked dimensions are non-contiguous (e.g. logic a [8])

logic [3:0][7:0] memory [32];
// memory[0] is 32 bits wide
// memory[0][0] is 8 bits wide
// memory[0][1] is 8 bits wide

logic [31:0] memory [32];
// memory[0] is 32 bits wide
// cannot represent more than 1 dimension in memory[0]
// can’t easily byte address the memory

11

12

1/26/2022

7

Structs

● Similar to Bundle in Chisel
○ Allows designer to group nets together, helps encapsulation of signals, easy declaration
○ Can be used within a module or in a module’s ports
○ Structs themselves can’t be parameterized

■ but can be created inside a parameterized module/interface

typedef struct packed {
logic [31:0] din,
logic [7:0] addr,
logic [3:0] wen,
mem_op op

} ram_cmd;

ram_cmd a;
always_ff @(posedge clk) begin

din <= ____
addr <= ____
wen <= ____
op <= ____

endmodule ram (
ram_cmd cmd,
logic [31:0] dout

);

Interfaces

● Interfaces allow designers to group together ports
○ Can be parameterized
○ Can contain structs, initial blocks with assertions, and other verification collateral
○ Simplify connections between parent and child modules

interface ram_if #(int addr_bits, data_bits)
(input clk);

logic [addr_bits-1:0] addr;
logic [data_bits-1:0] din;
logic [data_bits-1:0] dout;
mem_op op;

endinterface

module ram (
ram_if intf

);
always_ff @(posedge intf.clk)

intf.dout <= ram[intf.addr];
endmodule

module top();
ram_if #(.addr_bits(8), .data_bits(32)) intf();
ram r (.intf(intf));
assign intf.din = ____

endmodule

13

14

1/26/2022

8

Modports

● But I didn’t specify the direction (input/output) of the interface ports!
○ This can cause multi-driver issues with improper connections

● Solution: use modports

interface ram_if #(int addr_bits, data_bits)
(input clk);

modport slave (
input addr, din, op, clk,
output dout

);

modport master (
output addr, din, op,
input dout, clk

);
endinterface

module ram (
ram_if.slave intf

);
always_ff @(posedge intf.clk)

intf.dout <= ram[intf.addr];
endmodule

Typedefs (Type Aliases)

● You probably saw ‘typedef’ everywhere
○ typedef is used to expose user-defined types

● Just like with enums, they help attach semantic meaning to your design
● They are just type aliases

typedef signed logic [7:0] sgn_byte;
typedef unsigned logic [3:0] cache_idx;

15

16

1/26/2022

9

Unique

● Sometimes we want to make sure synthesis infers parallel logic vs priority mux
● The ‘unique’ keyword applied to a ‘if’ or ‘case’ statement

○ Adds simulation assertions to make sure only one branch condition is true
○ Tells synthesis tools to operate under that assumption
○ Legacy: ‘synopsys parallel_case full_case’

always_comb begin
unique if (x == 2’b10) a = ____;
else if (y && x == 2’b11) a = ____;
else a = ____;

end

Packages / Namespacing

● Verilog has a global namespace
○ Often naming conflicts in large projects
○ `include is hacky and requires ̀ ifdef guards

● SystemVerilog allows you to encapsulate constructs in a package
○ modules, functions, structs, typedefs, classes

package my_pkg;
typedef enum logic [1:0] { STATE[4] } state_t;
function show_vals();

state_t s = STATE0;
for (int i = 0; i < s.num; i = i + 1) begin

$display(s.name());
s = s.next();

end
endfunction

endpackage

import my_pkg::*;

module ex (input clk);
state_t s;
always_ff @(posedge clk) begin

s <= STATE0;
end

endmodule

17

18

1/26/2022

10

SystemVerilog for Verification

Overview

● The SystemVerilog spec for verification is massive
○ We can’t cover everything in one lecture

● New data structures for writing testbenches
○ Parity with PHP

● OOP
● SystemVerilog Assertions
● Coverage API
● Constrained random

19

20

1/26/2022

11

New Data Types

● bit, shortint, int, longint
○ 2-state types

● string
○ Now natively supported, some helper methods are defined on string (e.g. substr)

Dynamic Arrays

● Typical Verilog arrays are fixed length at compile time

bit [3:0] arr [3]; // a 3 element array of 4 bit values
arr = ‘{12, 10, 3}; // a literal array assignment

● Dynamic arrays are sized at runtime
○ Useful for generating variable length stimulus

bit [3:0] arr []; // a dynamic array of 4 bit values
initial begin

arr = new[2]; // size the array for 2 elements
arr = ‘{12, 10}; // literal assignment

arr = new[10];
arr[3] = 4;

end

21

22

1/26/2022

12

Queues

● Similar to lists in Scala and Python
○ Useful for hardware modeling (FIFO, stack) - process transactions sequentially

bit [3:0] data [$]; // a queue of 4-bit elements
bit [3:0] data [$] = ‘{1, 2, 3, 4}; // initialized queue
data[0] // first element
data[$] // last element
data.insert(1) // append element
data[1:$] // queue slice excluding first element
x = data.pop_front() // pops first element of queue and returns it
data = {} // clear the queue

Associative Arrays

● Similar to Python dicts or Scala Maps
○ Can be used to model a CAM or lookup testbench component settings

int fruits [string];
fruits = ‘{“apple”: 4, “orange”: 10};

fruits[“apple”]
fruits.exists(“lemon”)
fruits.delete(“orange”)

23

24

1/26/2022

13

Clocking Blocks

● There is often confusion when you should drive DUT inputs and sample DUT
outputs relative to the clock edge
○ Solution: encode the correct behavior in the interface by using clocking blocks

interface ram_if #(int addr_bits, data_bits)
(input clk);

logic [addr_bits-1:0] addr;
logic [data_bits-1:0] din;
logic [data_bits-1:0] dout;
mem_op op;

clocking ckb @(posedge clk)
default input #1step output negedge;
input dout;
output din, dout, op;

endclocking
endinterface

● Input/output is from the perspective of the testbench
● Can use any delay value or edge event as skew
● intf.ckb.din = 32’d100; @(intf.ckb); x = intf.ckb.dout;

OOP in SystemVerilog

● SystemVerilog has your typical object-oriented programming (OOP) constructs
○ Classes, constructors, type generics, inheritance, virtual methods/classes, polymorphism

class Message;
bit [31:0] addr;
bit [3:0] wr_strobe;
bit [3:0] burst_mode;
bit [31:0] data [4];

function new (bit [31:0] addr, bit [3:0] wr_strobe =
4’d0);

this.addr = addr;
this.wr_mode = wr_mode;
this.burst_mode = 4’b1010;
this.data = ‘{0, 0, 0, 0};

endfunction
endclass

initial begin
msg = new Message(32’d4,

4’b1111);
$display(msg.burst_mode);

end

25

26

mailto:@(intf.ckb);

1/26/2022

14

More OOP

● You can extend a class as usual
○ class ALUMessage extends Message
○ call .super() to access superclass functions
○ Polymorphic dynamic dispatch works as usual

● You can declare classes and functions ‘virtual’
○ Forces subclasses to provide an implementation
○ Prevents instantiation of abstract parent class

● Class members can be declared ‘static’
○ The member is shared among all class instances

● OOP constructs are used to:
○ Model transactions
○ Model hardware components (hierarchically and compositionally)

Type Generic Classes

● Classes can have parameters, just like modules
○ They can be ints, strings, or types
○ Parameters concretize the class prototype; constructor binds each class member
○ Can’t define type bounds on T

class FIFO #(type T = int, int entries = 8);
T items [entries];
int ptr;

function void push(T entry);
function T pull();

endclass

27

28

1/26/2022

15

SystemVerilog Assertions (SVA)

SystemVerilog Assertions (SVA)

● The most complex component of SystemVerilog
○ Entire books written on just this topic

● SVA: a temporal property specification language
○ Allows you to formally specify expected behavior of RTL

● You are already familiar with ‘assert’ (so-called ‘immediate assertions’)

module testbench();
dut d (.addr, .dout);

initial begin
addr = ‘h40;
assert (dout == ‘hDEADBEEF);

end
endmodule

● But how do I express properties that involve
the uArch of the RTL?

● Can I express these properties (e.g. req-ack)
in a concise way?

29

30

1/26/2022

16

Concurrent Assertions

● Concurrent assertions are constantly monitored by the RTL simulator
○ Often embedded in the DUT RTL or an interface

module cpu();
assert property @(posedge clk) mem_addr[1:0] != 2’d0 && load_word |-> unaligned_load
assert property @(posedge clk) opcode == 0 |-> take_exception
assert property @(posedge clk) mem_stall |=> $stable(pc)

endmodule

● Properties are evaluated on a clock edge
● |->: same-cycle implication
● |=>: next-cycle implication
● These properties can also be formally verified

System Functions

● You can call a system function in an SVA expression to simplify checking
historical properties
○ $stable(x): indicates if x was unchanged from the previous clock cycle
○ $rose(x)
○ $fell(x)
○ $past(x): gives you the value of x from 1 cycle ago

■ rs1_mem == $past(rs1_ex)

31

32

1/26/2022

17

Sequences

● Properties are made up of sequences + an implication
○ Many interfaces come with sequence libraries you can use to build complex properties

module cpu();
sequence stall

mem_stall;
endsequence

sequence unchanged_pc
##1 $stable(pc);

endsequence

property stall_holds_pc
@(posedge clk) stall |-> unchanged_pc;

endproperty

assert property (stall_holds_pc);
endmodule

Sequence Combinators

● Sequences are the core of SVA: they describe temporal RTL behavior
● Sequences can be combined with temporal operators

a ##1 b // a then b on the next cycle
a ##N b // a then b on the Nth cycle
a ##[1:4] b // a then b on the 1-4th subsequent cycle
a ##[2:$] b // a then b after 2 or more cycles

s1 and s2 // sequence s1 and s2 succeed
s1 intersect s2 // sequence s1 and s2 succeed and end at the same time
s1 or s2 // sequence s1 or s2 succeeds

● Sequences are combined with an implication to form a property
○ There’s a lot more to SVA

33

34

1/26/2022

18

Coverage APIs

Coverage

● You’re probably familiar with software coverage tools
○ Track if a line of source code is hit by the unit tests

● Coverage is used to measure the thoroughness of the test suite
○ Are all the interesting cases in the code exercised?

● RTL coverage comes in two forms
○ Structural coverage: line, toggle, condition
○ Functional coverage: did a particular uArch feature specified by the DV engineer get

exercised?
■ e.g. cache eviction, misaligned memory access, interrupt, all opcodes executed

35

36

1/26/2022

19

Property Coverage

● Any SVA property can be tracked for coverage
○ Instead of ‘assert property’ use ‘cover property’

property req_ack;
req ##[1:10] ack

endproperty
cover property (req_ack)

● Property covers are used in RTL to check that some multi-cycle uArch
behavior is exercised
○ e.g. did this req-ack handshake ever occur?
○ e.g. did a branch mispredict and predictor update happen?

Coverpoints and Covergroups

● Coverpoints track coverage of a single net
○ e.g. FSM state, control signals, data buses

● Covergroups group together coverpoints
○ Each coverpoint refers to a net whose value is tracked at every covergroup event
○ Can be used in RTL and in testbench code

module cpu ();
logic [5:0] rs1, rs2;
logic [2:0] funct3;

covergroup c @(posedge clk);
coverpoint rs1;
coverpoint funct3;

endgroup

endmodule

0 1 2 3 4 5 6 7 8
funct3 value

10 10 10

15

3 3 3

37

38

1/26/2022

20

Coverpoint Bins

● Sometimes we don’t want to track each value a net can take on individually
○ Use the bins API to group some values together

module alu(input [31:0] a, input [31:0] b, input [3:0] op, output [31:0] out);
covergroup c();

coverpoint a {
bins zero = {0};
bins max = {32’hffff_ffff};
// automatically allocate 100 uniformly sized bins for the remaining numbers
bins in_the_middle[100] = {[1:32’hffff_ffff - 1]};

}
endgroup

endmodule

Transaction-Level Modeling

39

40

1/26/2022

21

Transactions

● Our testbenches are usually written at cycle-granularity
○ Leads to mixing of driving/monitoring protocols, timing details, golden modeling, and stimulus
○ Each of these concerns should be separated

● Model a single interaction with the DUT as a ‘transaction’
○ It can take multiple cycles

● We can build a stimulus generator and golden model at transaction-level

class MemReqTx();
bit [31:0] addr;
bit [31:0] wr_data;
mem_op op;

endclass

class MemRespTx();
bit [31:0] rd_data;

endclass

class Mem();
bit [31:0] ram [];
function MemRespTx processTx(MemReqTx tx);

endclass

VIPs and Testbench Architecture

● Verification IPs consist of
tasks that encode
○ How to drive transactions into

an interface at cycle
granularity

○ How to translate cycle
granularity interface activity
into transactions

● A testbench
○ Generates stimulus
○ Generates golden DUT

behavior
○ Simulates actual DUT behavior
○ Checks correctness

Testbench
DUT (Mem)

Mem Interface

Mem VIP

Monitor

Driver
TransactionTransactionMemReqTx

Stimulus

Golden Model MemRespTx

DUT Resps

Golden Resps
MemRespTx Assert

Equals

41

42

1/26/2022

22

Random Transaction Generation

● How do we generate transaction-level stimulus?
● SystemVerilog class members can be prefixed with the ‘rand’ keyword

○ These fields are marked as randomizable

class MemReqTx();
rand bit [31:0] addr;
rand bit [31:0] wr_data;
rand mem_op op;

endclass

initial begin
MemReqTx tx = new();
tx.randomize();

end

Constrained Random

● You can constrain the random fields of a class inside or outside the class
○ You can add ad-hoc constraints when calling .randomize

class cls;
rand bit [7:0] min, typ, max;

constraint range {
0 < min; typ < max; typ > min; max < 128;

}
extern constraint extra;

endclass

constraint cls::extra { min > 5; };
initial begin

cls = new();
cls.randomize() with { min == 10; };

end

43

44

1/26/2022

23

Randomization of Variable Length Data Structures

● Many things I haven’t discussed
○ Biasing and distributions, soft constraints, disables, solve before, implications, dynamic

constraint on/off

class Packet;
rand bit [3:0] data [];

constraint size { data.size() > 5; data.size < 10; }

constraint values {
foreach(data[i]) {

data[i] == i + 1;
data[i] inside {[0:8]};

}
}

endclass

Mailboxes for Safe Inter-Thread Communication

● Mailboxes are like golang channels
○ Bounded queues that allow one thread to send data to another

module example;
mailbox #(int) m = new(100);

initial begin
for (int i = 0; i < 200; i++)

#1 m.put(i);
end

initial begin
for (int i = 0; i < 200; i++) begin

int i; #2 m.get(i);
$display(i, m.num());

end
end

endmodule

45

46

1/26/2022

24

Testbench Example

Register Bank

● Let’s test a simple register bank
○ Works like a memory
○ Multi-cycle (potentially variable) read/write latency
○ Uses a ready signal to indicate when a new operation (read/write) can begin

interface reg_if (input clk);
logic rst;
logic [7:0] addr;
logic [15:0] wdata;
logic [15:0] rdata;
mem_op op;
logic en;
logic ready;
// primary/secondary modports
// drv_cb/mon_cb clocking blocks

endinterface

module regbank (reg_if.slave if);
// implementation

endmodule

// Regbank transaction
class regbank_tx;

rand bit [7:0] addr;
rand bit [15:0] wdata;
bit [15:0] rdata;
rand bit wr;

endclass

47

48

1/26/2022

25

VIP Implementation

class driver;
virtual reg_if vif;
mailbox drv_mbx;

task run();
@(vif.drv_cb);
forever begin

regbank_tx tx;
drv_mbx.get(tx);
vif.drv_cb.en <= 1;
vif.drv_cb.addr <= tx.addr;
// assign op and wdata
@(vif.drv_cb);
while (!vif.drv_cb.ready)

@(vif.drv_cb)
end

endtask
endclass

class monitor;
virtual reg_if vif;
mailbox mon_mbx;

task run();
@(vif.mon_cb);
if (vif.en) begin

regbank_tx tx = new();
tx.addr = vif.mon_cb.addr;
// assign op and wdata
if (vif.mon_cb.op == READ) begin

@(vif.mon_cb);
tx.rdata = vif.mon_cb.rdata;

end
mon_mbx.put(tx);

end
endtask

endclass

Top-Level

● A rough sketch of the testbench top

module tb();
regbank dut (.*);
initial begin

// initialize driver/monitor classes
regbank_tx stim [100];
stim.randomize();
fork

drv.run(); mon.run();
join_none
drv.drv_mbx.put(stim);
while (mon.mon_mbx.size < 100)

@(dut.drv_cb);
// Pull tx from mon_mbx and check correctness

end
endmodule

49

50

mailto:@(vif.drv_cb);
mailto:@(vif.drv_cb);
mailto:@(vif.drv_cb)
mailto:@(vif.mon_cb);
mailto:@(vif.mon_cb);
mailto:@(dut.drv_cb);

1/26/2022

26

Conclusion

● SystemVerilog makes design easier and clearer than plain Verilog
● SystemVerilog has many useful verification features not found in open-source

environments
○ SVA, coverpoints, constrained random

● I’ve only scratched the surface
○ UVM
○ Hardware modeling
○ IPC

● Play around: https://www.edaplayground.com/x/CK
○ https://en.wikipedia.org/wiki/SystemVerilog

References

https://en.wikipedia.org/wiki/SystemVerilog

https://verificationguide.com/systemverilog/systemverilog-tutorial/

https://www.chipverify.com/systemverilog/systemverilog-tutorial

https://www.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-assertions-tutorial/

https://www.systemverilog.io/sva-basics

Advanced notes on SystemVerilog covergroups: https://staging.doulos.com/media/1600/dvclub_austin.pdf

51

52

https://www.edaplayground.com/x/CK
https://en.wikipedia.org/wiki/SystemVerilog
https://en.wikipedia.org/wiki/SystemVerilog
https://verificationguide.com/systemverilog/systemverilog-tutorial/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-assertions-tutorial/
https://www.systemverilog.io/sva-basics
https://staging.doulos.com/media/1600/dvclub_austin.pdf

1/26/2022

27

Notes on Vendor Support

Addendum Points

- Simulation loop, 4 state simulation
- x pessimism / optimism
- sources of mismatch between simulation and synthesis
- multiported memories and collision handling
- literals are 32 bits wide by default
- default_nettype

53

54

1/26/2022

28

Tagged Unions

- too complicated a subject for this lecture

55

