
An Overview of SystemVerilog
for Design and Verification

Vighnesh Iyer, EECS 251B

Intention of this Lecture

● We use Chisel for all RTL written at Berkeley
○ Why bother with SystemVerilog?

● SystemVerilog is the de-facto industry standard
○ SV/UVM is used for (nearly) all industry verification
○ You will be asked about it in interviews

● Understand basic dynamic verification concepts
● Understand existing SystemVerilog code
● Inspire extensions to HDLs

Universal Verification Methodology (UVM)
is a standard maintained by Accellera
https://www.accellera.org/downloads/standards/uvm

SystemVerilog (SV) is an IEEE Standard 1800
https://standards.ieee.org/project/1800.html

What is SystemVerilog

● IEEE 1800 standard
● A massive extension of Verilog with new constructs for design and verification

○ New data types (for RTL and testbenches)
○ OOP support
○ Constrained random API
○ Specification language
○ Coverage specification API

● Fixing warts in Verilog
○ Synthesis - simulation mismatch
○ Verilog was initially developed as a simulation language; synthesis emerged later

SystemVerilog for Design

Ending the Wire vs. Reg Confusion

Verilog -2005

● wire for LHS of assign statements
● reg for LHS of code inside always @

blocks

Both: the containing statement determines if the net is the
direct output of a register or combinational logic

SystemVerilog

● logic for LHS of assign statements
● logic for LHS of code inside always @

blocks

wire a;
reg b, c;
assign a = ____;
always @(*) b = ____;
always @(posedge clk) c <= ____;

logic a, b, c;
assign a = ____;
always @(*) b = ____;
always @(posedge clk) c <= ____;

Signal Your Intent With Specific Always Blocks

Verilog -2005

Coding style is used to verify that c infers
as a register and b as comb logic

SystemVerilog

always @(*) begin
if (x) b = a
else b = ! a;

end

always @(posedge clk) begin
if (x) c <= ! a;
else c <= a;

end

always_comb begin
if (x) b = a
else b = ! a;

end

always_ff @(posedge clk) begin
if (x) c <= ! a;
else c <= a;

end

New always_comb and always_ff
statements for safety

Autoconnect (Implicit Port Connections)

● How many times have you done this?

module mod (input a, b, output c); endmodule

reg a, b; wire c;
mod x (.a(a), .b(b), .c(c));

● If the net names and their corresponding port names match, there’s a shortcut
mod x (. a , . b, . c) ;

● In SystemVerilog, there’s a concise shortcut
mod x (. *) ;

● Implicit connections only work if port names and widths match

Use Enums Over localparams

Verilog -2005 SystemVerilog
localparam STATE_IDLE = 2’ b00;
localparam STATE_A = 2’ b01;
localparam STATE_B = 2’ b10;
reg [1: 0] state;

always @(posedge clk) begin
case (state)

STATE_IDLE: state <= STATE_A;
STATE_A: state <= STATE_B;
STATE_B: state <= STATE_IDLE;

endcase
end

typedef enum logic [1: 0] {
STATE_IDLE, STATE_A, STATE_B

} state_t;
state_t state;

always_ff @(posedge clk) begin
case (state)

STATE_IDLE: state <= STATE_A
STATE_A: state <= STATE_B;
STATE_B: state <= STATE_IDLE;

endcase
end

Enums automatically check whether all values can fit. Can
be used as a net type. Add semantic meaning to constants.

More on Enums

● Common to use enums for attaching semantic strings to values

typedef enum logic {
READ, WRITE

} mem_op_t;

module memory (
input [4: 0] addr,
input mem_op_t op,
input [31: 0] din,
output logic [31: 0] dout

);

● Note that input/output net types are by default ‘wire’, you can override them as
logic

Even More on Enums

● You can force enum values to be associated with a specific value
○ To help match up literals for a port that doesn’t use enums

typedef enum logic [1: 0] { STATE_IDLE=3, STATE_A=2, STATE_B=1 } state_t

● You can generate N enum values without typing them out

typedef enum logic [1: 0] { STATE[3] } s t a t e_t
/ / S TATE 0 = 0, S TATE 1 = 1, S TATE 2 = 2

● You can generate N enum values in a particular range

typedef enum logic [1: 0] { STATE[3:5] } s t a t e_t
/ / S TATE 3 = 0, S TATE 4 = 1, S TATE 5 = 2

Even More on Enums

● Enums are a first-class datatype in SystemVerilog
○ Enum instances have native functions defined on them

● next(): next value from current value
● prev(): previous value from current value
● num(): number of elements in enum
● name(): returns a string with the enum’s name (useful for printing using $display)

● They are weakly typechecked
○ You can’t assign a binary literal to a enum type net

● They show up in waveforms
○ No more confusion trying to correlate literals to a semantic name

Multidimensional Packed Arrays

● Packed dimensions are to the left of the variable name
○ Packed dimensions are contiguous (e.g. logic [7:0] a)

● Unpacked dimensions are to the right of the variable name
○ Unpacked dimensions are non-contiguous (e.g. logic a [8])

logic [3: 0][7: 0] memory [32];
// memory[0] is 32 bits wide
// memory[0][0] is 8 bits wide
// memory[0][1] is 8 bits wide

logic [31: 0] memory [32];
// memory[0] is 32 bits wide
// cannot represent more than 1 dimension in memory[0]
// can’t easily byte address the memory

Structs
● Similar to Bundle in Chisel

○ Allows designer to group nets together, helps encapsulation of signals, easy declaration
○ Can be used within a module or in a module’s ports
○ Structs themselves can’t be parameterized

● but can be created inside a parameterized module/interface

typedef struct packed {
logic [31: 0] din,
logic [7: 0] addr,
logic [3: 0] wen,
mem_op op

} ram_cmd;

ram_cmd a;
always_ff @(posedge clk) begin

din <= ____
addr <= ____
wen <= ____
op <= ____

endmodule ram (
ram_cmd cmd,
logic [31: 0] dout

);

Interfaces

● Interfaces allow designers to group together ports
○ Can be parameterized
○ Can contain structs, initial blocks with assertions, and other verification collateral
○ Simplify connections between parent and child modules

interface ram_if #(int addr_bits, data_bits)
(input clk);

logic [addr_bits - 1: 0] addr;
logic [data_bits - 1: 0] din;
logic [data_bits - 1: 0] dout;
mem_op op;

endinterface

module ram (
ram_if intf

);
always_ff @(posedge intf.clk)

intf.dout <= ram[intf.addr];
endmodule

module top();
ram_if #(.addr_bits(8), .data_bits(32)) intf();
ram r (.intf(intf));
assign intf.din = ____

endmodule

Modports

● But I didn’t specify the direction (input/output) of the interface ports!
○ This can cause multi-driver issues with improper connections

● Solution: use modports

interface ram_if #(int addr_bits, data_bits)
(input clk);

modport slave (
input addr, din, op, clk,
output dout

);

modport master (
output addr, din, op,
input dout, clk

);
endinterface

module ram (
ram_if.slave intf

);
always_ff @(posedge intf.clk)

intf.dout <= ram[intf.addr];
endmodule

Typedefs (Type Aliases)

● You probably saw ‘typedef’ everywhere
○ typedef is used to expose user-defined types

● J ust like with enums, they help attach semantic meaning to your design
● They are just type aliases

typedef signed logic [7: 0] sgn_byte;
typedef unsigned logic [3: 0] cache_idx;

Packages / Namespacing
● Verilog has a global namespace

○ Often naming conflicts in large projects
○ ìnclude is hacky and requires ìfdef guards

● SystemVerilog allows you to encapsulate constructs in a package
○ modules, functions, structs, typedefs, classes

package my_pkg;
typedef enum logic [1: 0] { STATE[4] } state_t;
function show_vals();

state_t s = STATE0;
for (int i = 0; i < s.num; i = i + 1) begin

$display (s.name());
s = s.next();

end
endfunction

endpackage

import my_pkg::* ;

module ex (input clk);
state_t s;
always_ff @(posedge clk) begin

s <= STATE0;
end

endmodule

SystemVerilog for Verification

Overview

● The SystemVerilog spec for verification is massive
○ We can’t cover everything in one lecture

● New data structures for writing testbenches
○ Parity with PHP

● OOP
● SystemVerilog Assertions
● Coverage API
● Constrained random

New Data Types

● bit, shortint, int, longint
○ 2-state types

● string
○ Now natively supported, some helper methods are defined on string (e.g. substr)

Dynamic Arrays

● Typical Verilog arrays are fixed length at compile time

bit [3: 0] arr [3]; // a 3 element array of 4 bit values
arr = ‘ { 12, 10, 3}; // a literal array assignment

● Dynamic arrays are sized at runtime
○ Useful for generating variable length stimulus

bit [3: 0] a r r [] ; / / a dy na mi c a r r a y of 4 bi t v a l ues
initial begin

a r r = new[2] ; / / s i z e t he a r r a y f or 2 e l ement s
a r r = ‘ { 12 , 10 } ; / / l i t er a l a s s i gnment

a r r = new[10] ;
a r r [3] = 4;

end

Queues

● Similar to lists in Scala and Python
○ Useful for hardware modeling (FIFO, stack) - process transactions sequentially

bit [3: 0] data [$]; // a queue of 4 - bit elements
bit [3: 0] data [$] = ‘ { 1, 2, 3, 4}; // initialized queue
data[0] // first element
data[$] // last element
data.insert(1) // append element
data[1: $] // queue slice excluding first element
x = data.pop_front() // pops first element of queue and returns it
data = {} // clear the queue

Associative Arrays

● Similar to Python dicts or Scala Maps
○ Can be used to model a CAM or lookup testbench component settings

int fruits [string];
fruits = ‘ { “ apple ” : 4, “ orange ” : 10};

fruits[“ apple ”]
fruits.exists(“ lemon ”)
fruits.delete(“ orange ”)

Clocking Blocks

● There is often confusion when you should drive DUT inputs and sample DUT
outputs relative to the clock edge
○ Solution: encode the correct behavior in the interface by using clocking blocks

interface ram_if #(int addr_bits, data_bits)
(input clk);

logic [addr_bits - 1: 0] addr;
logic [data_bits - 1: 0] din;
logic [data_bits - 1: 0] dout;
mem_op op;

clocking ckb @(posedge clk)
default input #1step output negedge ;
input dout;
output din, dout, op;

endclocking
endinterface

● Input/output is from the perspective of the testbench
● Can use any delay value or edge event as skew
● intf.ckb.din = 32’d100; @(intf.ckb); x = intf.ckb.dout;

OOP in SystemVerilog

● SystemVerilog has your typical object-oriented programming (OOP) constructs
○ Classes, constructors, type generics, inheritance, virtual methods/classes, polymorphism

class Message;
bit [31: 0] addr;
bit [3: 0] wr_strobe;
bit [3: 0] burst_mode;
bit [31: 0] data [4];

function new (bit [31: 0] addr, bit [3: 0] wr_strobe =
4’ d0);

this .addr = addr;
this .wr_mode = wr_mode;
this .burst_mode = 4’ b1010;
this .data = ‘ { 0, 0, 0, 0};

endfunction
endclass

initial begin
msg = new Message(32’ d4,

4’ b1111);
$display (msg.burst_mode);

end

More OOP

● You can extend a class as usual
○ class ALUMessage extends Message
○ call .super() to access superclass functions
○ Polymorphic dynamic dispatch works as usual

● You can declare classes and functions ‘virtual’
○ Forces subclasses to provide an implementation
○ Prevents instantiation of abstract parent class

● Class members can be declared ‘static’
○ The member is shared among all class instances

● OOP constructs are used to:
○ Model transactions
○ Model hardware components (hierarchically and compositionally)

Type Generic Classes

● Classes can have parameters, just like modules
○ They can be ints, strings, or types
○ Parameters concretize the class prototype; constructor binds each class member
○ Can’t define type bounds on T

class FIFO #(type T = int , int entries = 8);
T items [entries];
int ptr;

function void push(T entry);
function T pull();

endclass

SystemVerilog Assertions (SVA)

SystemVerilog Assertions (SVA)

● The most complex component of SystemVerilog
○ Entire books written on just this topic

● SVA: a temporal property specification language
○ Allows you to formally specify expected behavior of RTL

● You are already familiar with ‘assert’ (so-called ‘immediate assertions’)

module testbench();
dut d (.addr, .dout);

initial begin
addr = ‘ h40;
assert (dout == ‘ hDEADBEEF);

end
endmodule

● But how do I express properties that involve
the uArch of the RTL?

● Can I express these properties (e.g. req-ack)
in a concise way?

Concurrent Assertions

● Concurrent assertions are constantly monitored by the RTL simulator
○ Often embedded in the DUT RTL or an interface

module cpu();
assert property @(posedge clk) mem_addr[1: 0] != 2’ d0 && load_word | - > unaligned_load
assert property @(posedge clk) opcode == 0 | - > take_exception
assert property @(posedge clk) mem_stall |=> $stable(pc)

endmodule

● Properties are evaluated on a clock edge
● | - >: same-cycle implication
● | =>: next-cycle implication
● These properties can also be formally verified

System Functions

● You can call a system function in an SVA expression to simplify checking
historical properties
○ $stable(x) : indicates if x was unchanged from the previous clock cycle
○ $r os e(x)
○ $f el l (x)
○ $pa s t (x) : gives you the value of x from 1 cycle ago

■ r s 1_mem == $pa s t (r s 1_ex)

Sequences
● Properties are made up of sequences + an implication

○ Many interfaces come with sequence libraries you can use to build complex properties
module cpu();

sequence stall
mem_stall;

endsequence

sequence unchanged_pc
##1 $stable(pc);

endsequence

property stall_holds_pc
@(posedge clk) stall | - > unchanged_pc;

endproperty

assert property (stall_holds_pc);
endmodule

Sequence Combinators

● Sequences are the core of SVA: they describe temporal RTL behavior
● Sequences can be combined with temporal operators

a ## 1 b / / a t hen b on t he nex t c y c l e
a ##N b / / a t hen b on t he Nt h c y c l e
a ##[1: 4] b / / a t hen b on t he 1- 4t h s ubs equent c y c l e
a ##[2: $] b / / a t hen b a f t er 2 or mor e c y c l es

s 1 and s 2 / / s equenc e s 1 a nd s 2 s uc c eed
s 1 intersect s 2 / / s equenc e s 1 a nd s 2 s uc c eed a nd end a t t he s a me t i me
s 1 or s 2 / / s equenc e s 1 or s 2 s uc c eeds

● Sequences are combined with an implication to form a property
○ There’s a lot more to SVA

Coverage APIs

Coverage

● You’re probably familiar with software coverage tools
○ Track if a line of source code is hit by the unit tests

● Coverage is used to measure the thoroughness of the test suite
○ Are all the interesting cases in the code exercised?

● RTL coverage comes in two forms
○ Structural coverage: line, toggle, condition
○ Functional coverage: did a particular uArch feature specified by the DV engineer get

exercised?
● e.g. cache eviction, misaligned memory access, interrupt, all opcodes executed

Property Coverage

● Any SVA property can be tracked for coverage
○ Instead of ‘assert property’ use ‘cover property’

property req_ack;
req ##[1: 10] ack

endproperty
cover property (req_ack)

● Property covers are used in RTL to check that some multi -cycle uArch
behavior is exercised
○ e.g. did this req-ack handshake ever occur?
○ e.g. did a branch mispredict and predictor update happen?

Coverpoints and Covergroups

● Coverpoints track coverage of a single net
○ e.g. FSM state, control signals, data buses

● Covergroups group together coverpoints
○ Each coverpoint refers to a net whose value is tracked at every covergroup event
○ Can be used in RTL and in testbench code

module cpu ();
logic [5: 0] rs1, rs2;
logic [2: 0] funct3;

covergroup c @(posedge clk);
coverpoint rs1;
coverpoint funct3;

endgroup

endmodule

0 1 2 3 4 5 6 7 8
funct3 value

10 10 10

15

3 3 3

Coverpoint Bins

● Sometimes we don’t want to track each value a net can take on individually
○ Use the bins API to group some values together

module alu(input [31: 0] a, input [31: 0] b, input [3: 0] op, output [31: 0] out);
covergroup c();

coverpoint a {
bins zero = { 0};
bins max = { 32’ hffff_ffff};
// automatically allocate 100 uniformly sized bins for the remaining numbers
bins in_the_middle[100] = {[1: 32’ hffff_ffff - 1]};

}
endgroup

endmodule

Transaction-Level Modeling

Transactions
● Our testbenches are usually written at cycle-granularity

○ Leads to mixing of driving/monitoring protocols, timing details, golden modeling, and stimulus
○ Each of these concerns should be separated

● Model a single interaction with the DUT as a ‘transaction’
○ It can take multiple cycles

● We can build a stimulus generator and golden model at transaction-level

class MemReqTx();
bit [31: 0] addr;
bit [31: 0] wr_data;
mem_op op;

endclass

class MemRespTx();
bit [31: 0] rd_data;

endclass

class Mem();
bit [31: 0] ram [];
function MemRespTx processTx(MemReqTx tx);

endclass

VIPs and Testbench Architecture

● Verification IPs consist of
tasks that encode
○ How to drive transactions into

an interface at cycle
granularity

○ How to translate cycle
granularity interface activity
into transactions

● A testbench
○ Generates stimulus
○ Generates golden DUT

behavior
○ Simulates actual DUT behavior
○ Checks correctness

Testbench
DUT (Mem)

Mem Interface

Mem VIP

Monitor

Driver
TransactionTransactionMemReqTx

Stimulus

Golden Model MemRespTx

DUT Resps

Golden Resps
MemRespTx Assert

Equals

Random Transaction Generation

● How do we generate transaction-level stimulus?
● SystemVerilog class members can be prefixed with the ‘rand’ keyword

○ These fields are marked as randomizable

class MemReqTx();
rand bit [31: 0] addr;
rand bit [31: 0] wr_data;
rand mem_op op;

endclass

initial begin
MemReqTx tx = new();
tx.randomize();

end

Constrained Random

● You can constrain the random fields of a class inside or outside the class
○ You can add ad-hoc constraints when calling .randomize

class cls;
rand bit [7: 0] min, typ, max;

constraint range {
0 < min; typ < max; typ > min; max < 128 ;

}
extern constraint extra;

endclass

constraint cls :: extra { min > 5; };
initial begin

cls = new();
cls.randomize() with { min == 10; };

end

Randomization of Variable Length Data Structures

● Many things I haven’t discussed
○ Biasing and distributions, soft constraints, disables, solve before, implications, dynamic

constraint on/off

class Packet;
rand bit [3: 0] data [];

constraint size { data.size() > 5; data.size < 10; }

constraint values {
foreach (data[i]) {

data[i] == i + 1;
data[i] inside {[0: 8]};

}
}

endclass

Mailboxes for Safe Inter-Thread Communication

● Mailboxes are like golang channels
○ Bounded queues that allow one thread to send data to another

module example;
mailbox #(int) m = new(100);

initial begin
for (int i = 0; i < 200 ; i ++)

#1 m.put(i);
end

initial begin
for (int i = 0; i < 200 ; i ++) begin

int i; # 2 m.get(i);
$display (i, m.num());

end
end

endmodule

Testbench Example

Register Bank

● Let’s test a simple register bank
○ Works like a memory
○ Multi-cycle (potentially variable) read/write latency
○ Uses a ready signal to indicate when a new operation (read/write) can begin

interface reg_if (input clk);
logic rst;
logic [7: 0] addr;
logic [15: 0] wdata;
logic [15: 0] rdata;
mem_op op;
logic en;
logic ready;
// primary/secondary modports
// drv_cb/mon_cb clocking blocks

endinterface

module regbank (reg_if.slave if);
// implementation

endmodule

// Regbank transaction
class regbank_tx;

rand bit [7: 0] addr;
rand bit [15: 0] wdata;
bit [15: 0] rdata;
rand bit wr;

endclass

VIP Implementation
class driver;

virtual reg_if vif;
mailbox drv_mbx;

task run();
@(vif.drv_cb);
forever begin

regbank_tx tx;
drv_mbx.get(tx);
vif.drv_cb.en <= 1;
vif.drv_cb.addr <= tx.addr;
// assign op and wdata
@(vif.drv_cb);
while (! vif.drv_cb.ready)

@(vif.drv_cb)
end

endtask
endclass

class monitor;
virtual reg_if vif;
mailbox mon_mbx;

task run();
@(vif.mon_cb);
if (vif.en) begin

regbank_tx tx = new();
tx.addr = vif.mon_cb.addr;
// assign op and wdata
if (vif.mon_cb.op == READ) begin

@(vif.mon_cb);
tx.rdata = vif.mon_cb.rdata;

end
mon_mbx.put(tx);

end
endtask

endclass

Top-Level

● A rough sketch of the testbench top

module tb();
regbank dut (. *);
initial begin

// initialize driver/monitor classes
regbank_tx stim [100];
stim.randomize();
fork

drv.run(); mon.run();
join_none
drv.drv_mbx.put(stim);
while (mon.mon_mbx.size < 100)

@(dut.drv_cb);
// Pull tx from mon_mbx and check correctness

end
endmodule

Conclusion

● SystemVerilog makes design easier and clearer than plain Verilog
● SystemVerilog has many useful verification features not found in open-source

environments
○ SVA, coverpoints, constrained random

● I’ve only scratched the surface
○ UVM
○ Hardware modeling
○ IPC

● Play around: https://www.edaplayground.com/x/CK
○ https://en.wikipedia.org/wiki/SystemVerilog

https://www.edaplayground.com/x/CK
https://en.wikipedia.org/wiki/SystemVerilog

References

https://en.wikipedia.org/wiki/SystemVerilog

https://verificationguide.com/systemverilog/systemverilog-tutorial/

https://www.chipverify.com/systemverilog/systemverilog-tutorial

https://www.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-assertions-tutorial/

https://www.systemverilog.io/sva-basics

Advanced notes on SystemVerilog covergroups: https://staging.doulos.com/media/1600/dvclub_austin.pdf

https://en.wikipedia.org/wiki/SystemVerilog
https://verificationguide.com/systemverilog/systemverilog-tutorial/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.doulos.com/knowhow/systemverilog/systemverilog-tutorials/systemverilog-assertions-tutorial/
https://www.systemverilog.io/sva-basics
https://staging.doulos.com/media/1600/dvclub_austin.pdf

	An Overview of SystemVerilog for Design and Verification
	Intention of this Lecture
	What is SystemVerilog
	SystemVerilog for Design
	Ending the Wire vs. Reg Confusion
	Signal Your Intent With Specific Always Blocks
	Autoconnect (Implicit Port Connections)
	Use Enums Over localparams
	More on Enums
	Even More on Enums
	Even More on Enums
	Multidimensional Packed Arrays
	Structs
	Interfaces
	Modports
	Typedefs (Type Aliases)
	Packages / Namespacing
	SystemVerilog for Verification
	Overview
	New Data Types
	Dynamic Arrays
	Queues
	Associative Arrays
	Clocking Blocks
	OOP in SystemVerilog
	More OOP
	Type Generic Classes
	SystemVerilog Assertions (SVA)
	SystemVerilog Assertions (SVA)
	Concurrent Assertions
	System Functions
	Sequences
	Sequence Combinators
	Coverage APIs
	Coverage
	Property Coverage
	Coverpoints and Covergroups
	Coverpoint Bins
	Transaction-Level Modeling
	Transactions
	VIPs and Testbench Architecture
	Random Transaction Generation
	Constrained Random
	Randomization of Variable Length Data Structures
	Mailboxes for Safe Inter-Thread Communication
	Testbench Example
	Register Bank
	VIP Implementation
	Top-Level
	Conclusion
	References

