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Intention of this Lecture

● We use Chisel for all RTL written at Berkeley
○ Why bother with SystemVerilog?

● SystemVerilog is the de-facto industry standard
○ SV/UVM is used for (nearly) all industry verification
○ You will be asked about it in interviews

● Understand basic dynamic verification concepts
● Understand existing SystemVerilog code
● Inspire extensions to HDLs

Universal Verification Methodology (UVM) 
is a standard maintained by Accellera 
https://www.accellera.org/downloads/standards/uvm

SystemVerilog (SV) is an IEEE Standard 1800
https://standards.ieee.org/project/1800.html



What is SystemVerilog

● IEEE 1800 standard
● A massive extension of Verilog with new constructs for design and verification

○ New data types (for RTL and testbenches)
○ OOP support
○ Constrained random API
○ Specification language
○ Coverage specification API

● Fixing warts in Verilog
○ Synthesis - simulation mismatch
○ Verilog was initially developed as a simulation language; synthesis emerged later



SystemVerilog for Design



Ending the Wire vs. Reg Confusion

Verilog -2005

● wire for LHS of assign statements
● reg for LHS of code inside always @ 

blocks

Both: the containing statement determines if the net is the 
direct output of a register or combinational logic

SystemVerilog

● logic for LHS of assign statements
● logic for LHS of code inside always @ 

blocks

wire a;
reg b, c;
assign a = ____;
always @(* ) b = ____;
always @(posedge clk) c <= ____;

logic a, b, c;
assign a = ____;
always @(* ) b = ____;
always @(posedge clk) c <= ____;



Signal Your Intent With Specific Always Blocks

Verilog -2005

Coding style is used to verify that c infers 
as a register and b as comb logic

SystemVerilog

always @(* ) begin
if (x) b = a 
else b = ! a;

end

always @(posedge clk) begin
if (x) c <= ! a;
else c <= a;

end

always_comb begin
if (x) b = a 
else b = ! a;

end

always_ff @(posedge clk) begin
if (x) c <= ! a;
else c <= a;

end

New always_comb and always_ff
statements for safety



Autoconnect (Implicit Port Connections)

● How many times have you done this?

module mod ( input a, b, output c); endmodule

reg a, b; wire c;
mod x (.a(a), .b(b), .c(c));

● If the net names and their corresponding port names match, there’s a shortcut
mod x  ( . a ,  . b,  . c ) ;

● In SystemVerilog, there’s a concise shortcut
mod x  ( . * ) ;

● Implicit connections only work if port names and widths match



Use Enums Over localparams

Verilog -2005 SystemVerilog
localparam STATE_IDLE = 2’ b00;
localparam STATE_A = 2’ b01;
localparam STATE_B = 2’ b10;
reg [ 1: 0] state;

always @(posedge clk) begin
case (state)

STATE_IDLE: state <= STATE_A;
STATE_A: state <= STATE_B;
STATE_B: state <= STATE_IDLE;

endcase
end

typedef enum logic [ 1: 0] {
STATE_IDLE, STATE_A, STATE_B

} state_t;
state_t state; 

always_ff @(posedge clk) begin
case (state)

STATE_IDLE: state <= STATE_A
STATE_A: state <= STATE_B;
STATE_B: state <= STATE_IDLE;

endcase
end

Enums automatically check whether all values can fit. Can 
be used as a net type. Add semantic meaning to constants.



More on Enums

● Common to use enums for attaching semantic strings to values

typedef enum logic {
READ, WRITE

}  mem_op_t;

module memory (
input [ 4: 0] addr,
input mem_op_t op,
input [ 31: 0] din,
output logic [ 31: 0] dout

);

● Note that input/output net types are by default ‘wire’, you can override them as 
logic



Even More on Enums

● You can force enum values to be associated with a specific value
○ To help match up literals for a port that doesn’t use enums

typedef enum logic [ 1: 0] { STATE_IDLE=3, STATE_A=2, STATE_B=1 } state_t

● You can generate N enum values without typing them out

typedef enum logic [ 1: 0]  {  STATE[ 3]  }  s t a t e_t
/ /  S TATE 0 = 0,  S TATE 1 = 1,  S TATE 2 = 2

● You can generate N enum values in a particular range

typedef enum logic [ 1: 0]  {  STATE[ 3:5 ]  }  s t a t e_t
/ /  S TATE 3 = 0,  S TATE 4 = 1,  S TATE 5 = 2



Even More on Enums

● Enums are a first-class datatype in SystemVerilog
○ Enum instances have native functions defined on them

● next(): next value from current value
● prev(): previous value from current value
● num(): number of elements in enum
● name(): returns a string with the enum’s name (useful for printing using $display )

● They are weakly typechecked
○ You can’t assign a binary literal to a enum type net

● They show up in waveforms
○ No more confusion trying to correlate literals to a semantic name



Multidimensional Packed Arrays

● Packed dimensions are to the left of the variable name
○ Packed dimensions are contiguous (e.g. logic [7:0] a)

● Unpacked dimensions are to the right of the variable name
○ Unpacked dimensions are non-contiguous (e.g. logic a [8])

logic [ 3: 0][ 7: 0] memory [ 32];
// memory[0] is 32 bits wide
// memory[0][0] is 8 bits wide
// memory[0][1] is 8 bits wide

logic [ 31: 0] memory [ 32];
// memory[0] is 32 bits wide
// cannot represent more than 1 dimension in memory[0]
// can’t easily byte address the memory



Structs 
● Similar to Bundle in Chisel

○ Allows designer to group nets together, helps encapsulation of signals, easy declaration
○ Can be used within a module or in a module’s ports
○ Structs themselves can’t be parameterized

● but can be created inside a parameterized module/interface

typedef struct packed {
logic [ 31: 0] din,
logic [ 7: 0] addr,
logic [ 3: 0] wen,
mem_op op

} ram_cmd;

ram_cmd a;
always_ff @(posedge clk) begin

din <= ____
addr <= ____
wen <= ____
op <= ____

endmodule ram (
ram_cmd cmd,
logic [ 31: 0] dout

);



Interfaces

● Interfaces allow designers to group together ports
○ Can be parameterized
○ Can contain structs, initial blocks with assertions, and other verification collateral
○ Simplify connections between parent and child modules

interface ram_if #( int addr_bits, data_bits)     
( input clk);

logic [addr_bits - 1: 0] addr;
logic [data_bits - 1: 0] din;
logic [data_bits - 1: 0] dout;
mem_op op;

endinterface

module ram (
ram_if intf

);
always_ff @(posedge intf.clk)

intf.dout <= ram[intf.addr];
endmodule

module top();
ram_if #(.addr_bits( 8), .data_bits( 32)) intf();
ram r (.intf(intf));
assign intf.din = ____

endmodule



Modports

● But I didn’t specify the direction (input/output) of the interface ports!
○ This can cause multi-driver issues with improper connections

● Solution: use modports

interface ram_if #( int addr_bits, data_bits)     
( input clk);

modport slave (
input addr, din, op, clk,
output dout

);

modport master (
output addr, din, op,
input dout, clk

);
endinterface

module ram (
ram_if.slave intf

);
always_ff @(posedge intf.clk)

intf.dout <= ram[intf.addr];
endmodule



Typedefs (Type Aliases)

● You probably saw ‘typedef’ everywhere
○ typedef is used to expose user-defined types

● J ust like with enums, they help attach semantic meaning to your design
● They are just type aliases

typedef signed logic [ 7: 0] sgn_byte;
typedef unsigned logic [ 3: 0] cache_idx;



Packages / Namespacing
● Verilog has a global namespace

○ Often naming conflicts in large projects
○ ìnclude is hacky and requires ìfdef guards

● SystemVerilog allows you to encapsulate constructs in a package
○ modules, functions, structs, typedefs, classes

package my_pkg;
typedef enum logic [ 1: 0] { STATE[ 4] } state_t;
function show_vals();

state_t s = STATE0;
for ( int i = 0; i < s.num; i = i + 1) begin

$display (s.name());
s = s.next();

end
endfunction

endpackage

import my_pkg::* ;

module ex ( input clk);
state_t s;
always_ff @(posedge clk) begin

s <= STATE0;
end

endmodule



SystemVerilog for Verification



Overview

● The SystemVerilog spec for verification is massive
○ We can’t cover everything in one lecture

● New data structures for writing testbenches
○ Parity with PHP

● OOP
● SystemVerilog Assertions
● Coverage API
● Constrained random



New Data Types

● bit, shortint, int, longint
○ 2-state types

● string
○ Now natively supported, some helper methods are defined on string (e.g. substr)



Dynamic Arrays

● Typical Verilog arrays are fixed length at compile time

bit [ 3: 0] arr [ 3]; // a 3 element array of 4 bit values
arr = ‘ { 12, 10, 3}; // a literal array assignment

● Dynamic arrays are sized at runtime
○ Useful for generating variable length stimulus

bit [ 3: 0]  a r r  [ ] ;  / /  a  dy na mi c  a r r a y  of  4 bi t  v a l ues
initial begin

a r r  = new[ 2] ;  / /  s i z e  t he a r r a y  f or  2 e l ement s
a r r  = ‘ { 12 ,  10 } ;  / /  l i t er a l  a s s i gnment

a r r  = new[ 10 ] ;
a r r [ 3]  = 4;

end



Queues

● Similar to lists in Scala and Python
○ Useful for hardware modeling (FIFO, stack) - process transactions sequentially

bit [ 3: 0] data [ $]; // a queue of 4 - bit elements
bit [ 3: 0] data [ $] = ‘ { 1, 2, 3, 4}; // initialized queue
data[ 0] // first element
data[ $] // last element
data.insert( 1) // append element
data[ 1: $] // queue slice excluding first element
x = data.pop_front() // pops first element of queue and returns it
data = {} // clear the queue



Associative Arrays

● Similar to Python dicts or Scala Maps
○ Can be used to model a CAM or lookup testbench component settings

int fruits [ string ];
fruits = ‘ { “ apple ” : 4, “ orange ” : 10};

fruits[ “ apple ” ]
fruits.exists( “ lemon ” )
fruits.delete( “ orange ” )



Clocking Blocks

● There is often confusion when you should drive DUT inputs and sample DUT 
outputs relative to the clock edge
○ Solution: encode the correct behavior in the interface by using clocking blocks

interface ram_if #( int addr_bits, data_bits) 
( input clk);

logic [addr_bits - 1: 0] addr;
logic [data_bits - 1: 0] din;
logic [data_bits - 1: 0] dout;
mem_op op;

clocking ckb @( posedge clk)
default input #1step output negedge ;
input dout;
output din, dout, op;

endclocking
endinterface

● Input/output is from the perspective of the testbench
● Can use any delay value or edge event as skew
● intf.ckb.din = 32’d100; @(intf.ckb); x = intf.ckb.dout;



OOP in SystemVerilog

● SystemVerilog has your typical object-oriented programming (OOP) constructs
○ Classes, constructors, type generics, inheritance, virtual methods/classes, polymorphism

class Message;
bit [ 31: 0] addr;
bit [ 3: 0] wr_strobe;
bit [ 3: 0] burst_mode;
bit [ 31: 0] data [ 4];

function new ( bit [ 31: 0] addr, bit [ 3: 0] wr_strobe =
4’ d0);

this .addr = addr;
this .wr_mode = wr_mode;
this .burst_mode = 4’ b1010;
this .data = ‘ { 0, 0, 0, 0};

endfunction
endclass

initial begin
msg = new Message( 32’ d4, 

4’ b1111);
$display (msg.burst_mode);

end



More OOP

● You can extend a class as usual
○ class ALUMessage extends Message
○ call .super() to access superclass functions
○ Polymorphic dynamic dispatch works as usual

● You can declare classes and functions ‘virtual’
○ Forces subclasses to provide an implementation
○ Prevents instantiation of abstract parent class

● Class members can be declared ‘static’
○ The member is shared among all class instances

● OOP constructs are used to:
○ Model transactions
○ Model hardware components (hierarchically and compositionally)



Type Generic Classes

● Classes can have parameters, just like modules
○ They can be ints, strings, or types
○ Parameters concretize the class prototype; constructor binds each class member
○ Can’t define type bounds on T

class FIFO #( type T = int , int entries = 8);
T items [entries];
int ptr;

function void push( T entry);
function T pull();

endclass



SystemVerilog Assertions (SVA)



SystemVerilog Assertions (SVA)

● The most complex component of SystemVerilog
○ Entire books written on just this topic

● SVA: a temporal property specification language
○ Allows you to formally specify expected behavior of RTL

● You are already familiar with ‘assert’ (so-called ‘immediate assertions’)

module testbench();
dut d (.addr, .dout);

initial begin
addr = ‘ h40;
assert (dout == ‘ hDEADBEEF);

end
endmodule

● But how do I express properties that involve 
the uArch of the RTL?

● Can I express these properties (e.g. req-ack) 
in a concise way?



Concurrent Assertions

● Concurrent assertions are constantly monitored by the RTL simulator
○ Often embedded in the DUT RTL or an interface

module cpu();
assert property @(posedge clk) mem_addr[ 1: 0] != 2’ d0 && load_word | - > unaligned_load
assert property @(posedge clk) opcode == 0 | - > take_exception 
assert property @(posedge clk) mem_stall |=> $stable(pc)

endmodule

● Properties are evaluated on a clock edge
● | - >: same-cycle implication
● | =>: next-cycle implication
● These properties can also be formally verified



System Functions

● You can call a system function in an SVA expression to simplify checking 
historical properties
○ $stable(x) : indicates if x was unchanged from the previous clock cycle
○ $r os e( x )
○ $f el l ( x )
○ $pa s t ( x ) : gives you the value of x from 1 cycle ago

■ r s 1_mem == $pa s t ( r s 1_ex )



Sequences
● Properties are made up of sequences + an implication

○ Many interfaces come with sequence libraries you can use to build complex properties
module cpu();

sequence stall
mem_stall;

endsequence

sequence unchanged_pc
##1 $stable(pc);

endsequence

property stall_holds_pc
@(posedge clk) stall | - > unchanged_pc;

endproperty

assert property (stall_holds_pc);
endmodule



Sequence Combinators

● Sequences are the core of SVA: they describe temporal RTL behavior
● Sequences can be combined with temporal operators

a ## 1 b / /  a  t hen b on t he nex t  c y c l e
a  ##N b / /  a  t hen b on t he Nt h c y c l e
a  ##[ 1: 4]  b / /  a  t hen b on t he 1- 4t h s ubs equent  c y c l e
a  ##[ 2: $]  b / /  a  t hen b a f t er  2 or  mor e c y c l es

s 1 and s 2 / /  s equenc e s 1 a nd s 2 s uc c eed
s 1 intersect s 2 / /  s equenc e s 1 a nd s 2 s uc c eed a nd end a t  t he s a me t i me
s 1 or s 2 / /  s equenc e s 1 or  s 2 s uc c eeds

● Sequences are combined with an implication to form a property
○ There’s a lot more to SVA



Coverage APIs



Coverage

● You’re probably familiar with software coverage tools
○ Track if a line of source code is hit by the unit tests

● Coverage is used to measure the thoroughness of the test suite
○ Are all the interesting cases in the code exercised?

● RTL coverage comes in two forms
○ Structural coverage: line, toggle, condition
○ Functional coverage: did a particular uArch feature specified by the DV engineer get 

exercised?
● e.g. cache eviction, misaligned memory access, interrupt, all opcodes executed



Property Coverage

● Any SVA property can be tracked for coverage
○ Instead of ‘assert property’ use ‘cover property’

property req_ack;
req ##[ 1: 10] ack

endproperty
cover property (req_ack)

● Property covers are used in RTL to check that some multi -cycle uArch 
behavior is exercised
○ e.g. did this req-ack handshake ever occur?
○ e.g. did a branch mispredict and predictor update happen?



Coverpoints and Covergroups

● Coverpoints track coverage of a single net
○ e.g. FSM state, control signals, data buses

● Covergroups group together coverpoints
○ Each coverpoint refers to a net whose value is tracked at every covergroup event
○ Can be used in RTL and in testbench code

module cpu ();
logic [ 5: 0] rs1, rs2;
logic [ 2: 0] funct3;

covergroup c @( posedge clk);
coverpoint rs1;
coverpoint funct3;

endgroup

endmodule

0  1  2  3  4  5  6  7  8
funct3 value

10 10 10

15

3 3 3



Coverpoint Bins

● Sometimes we don’t want to track each value a net can take on individually
○ Use the bins API to group some values together

module alu( input [ 31: 0] a, input [ 31: 0] b, input [ 3: 0] op, output [ 31: 0] out);
covergroup c();

coverpoint a {
bins zero = { 0};
bins max = { 32’ hffff_ffff};
// automatically allocate 100 uniformly sized bins for the remaining numbers
bins in_the_middle[ 100 ] = {[ 1: 32’ hffff_ffff - 1]};

}
endgroup

endmodule



Transaction-Level Modeling



Transactions
● Our testbenches are usually written at cycle-granularity

○ Leads to mixing of driving/monitoring protocols, timing details, golden modeling, and stimulus
○ Each of these concerns should be separated

● Model a single interaction with the DUT as a ‘transaction’
○ It can take multiple cycles

● We can build a stimulus generator and golden model at transaction-level

class MemReqTx();
bit [ 31: 0] addr;
bit [ 31: 0] wr_data;
mem_op op;

endclass

class MemRespTx();
bit [ 31: 0] rd_data;

endclass

class Mem();
bit [ 31: 0] ram [];
function MemRespTx processTx(MemReqTx tx);

endclass



VIPs and Testbench Architecture

● Verification IPs consist of 
tasks that encode
○ How to drive transactions into 

an interface at cycle 
granularity

○ How to translate cycle 
granularity interface activity 
into transactions

● A testbench
○ Generates stimulus
○ Generates golden DUT 

behavior
○ Simulates actual DUT behavior
○ Checks correctness

Testbench
DUT (Mem)

Mem Interface

Mem VIP

Monitor

Driver
TransactionTransactionMemReqTx

Stimulus

Golden Model MemRespTx

DUT Resps

Golden Resps
MemRespTx Assert

Equals



Random Transaction Generation

● How do we generate transaction-level stimulus?
● SystemVerilog class members can be prefixed with the ‘rand’ keyword

○ These fields are marked as randomizable

class MemReqTx();
rand bit [ 31: 0] addr;
rand bit [ 31: 0] wr_data;
rand mem_op op;

endclass

initial begin
MemReqTx tx = new();
tx.randomize();

end



Constrained Random

● You can constrain the random fields of a class inside or outside the class
○ You can add ad-hoc constraints when calling .randomize

class cls;
rand bit [ 7: 0] min, typ, max;

constraint range {
0 < min; typ < max; typ > min; max < 128 ;

}
extern constraint extra;

endclass

constraint cls :: extra { min > 5; };
initial begin

cls = new();
cls.randomize() with { min == 10; };

end



Randomization of Variable Length Data Structures

● Many things I haven’t discussed
○ Biasing and distributions, soft constraints, disables, solve before, implications, dynamic 

constraint on/off

class Packet;
rand bit [ 3: 0] data [];

constraint size { data.size() > 5; data.size < 10; }

constraint values { 
foreach (data[i]) {

data[i] == i + 1;
data[i] inside {[ 0: 8]};

}
}

endclass



Mailboxes for Safe Inter-Thread Communication

● Mailboxes are like golang channels
○ Bounded queues that allow one thread to send data to another

module example;
mailbox #( int ) m = new( 100 );

initial begin
for ( int i = 0; i < 200 ; i ++)

#1 m.put(i);
end

initial begin
for ( int i = 0; i < 200 ; i ++) begin

int i; # 2 m.get(i);
$display (i, m.num());

end
end

endmodule



Testbench Example



Register Bank 

● Let’s test a simple register bank
○ Works like a memory
○ Multi-cycle (potentially variable) read/write latency
○ Uses a ready signal to indicate when a new operation (read/write) can begin

interface reg_if ( input clk);
logic rst;
logic [ 7: 0] addr;
logic [ 15: 0] wdata;
logic [ 15: 0] rdata;
mem_op op;
logic en;
logic ready;
// primary/secondary modports
// drv_cb/mon_cb clocking blocks

endinterface

module regbank (reg_if.slave if );
// implementation

endmodule

// Regbank transaction
class regbank_tx;

rand bit [ 7: 0] addr;
rand bit [ 15: 0] wdata;
bit [ 15: 0] rdata;
rand bit wr;

endclass



VIP Implementation
class driver;

virtual reg_if vif;
mailbox drv_mbx;

task run();
@(vif.drv_cb);
forever begin

regbank_tx tx;
drv_mbx.get(tx);
vif.drv_cb.en <= 1;
vif.drv_cb.addr <= tx.addr;
// assign op and wdata
@(vif.drv_cb);
while ( ! vif.drv_cb.ready)

@(vif.drv_cb)
end

endtask
endclass

class monitor;
virtual reg_if vif;
mailbox mon_mbx;

task run();
@(vif.mon_cb);
if (vif.en) begin

regbank_tx tx = new();
tx.addr = vif.mon_cb.addr;
// assign op and wdata
if (vif.mon_cb.op == READ) begin

@(vif.mon_cb);
tx.rdata = vif.mon_cb.rdata;

end
mon_mbx.put(tx);

end
endtask

endclass



Top-Level

● A rough sketch of the testbench top

module tb();
regbank dut (. * );
initial begin

// initialize driver/monitor classes
regbank_tx stim [ 100 ];
stim.randomize();
fork

drv.run();  mon.run();
join_none
drv.drv_mbx.put(stim);
while (mon.mon_mbx.size < 100 )

@(dut.drv_cb);
// Pull tx from mon_mbx and check correctness

end
endmodule



Conclusion

● SystemVerilog makes design easier and clearer than plain Verilog
● SystemVerilog has many useful verification features not found in open-source 

environments
○ SVA, coverpoints, constrained random

● I’ve only scratched the surface
○ UVM
○ Hardware modeling
○ IPC

● Play around: https://www.edaplayground.com/x/CK
○ https://en.wikipedia.org/wiki/SystemVerilog

https://www.edaplayground.com/x/CK
https://en.wikipedia.org/wiki/SystemVerilog
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