Intel to acquire Tower Semiconductor in $5.4 bln deal

Intel Corp agreed to acquire Tower Semiconductor Ltd (TSEM.TA) for an enterprise value of $5.4 billion, the companies said on Tuesday.

Intel will acquire Tower for $53 per share in cash, the statement added.

Recap

• FinFET and FDSOI processes deployed now
 • Expected to be replaced by nanosheets

• Lithography and manufacturing restrict design rules
 • Need to be aware of implications on design
 • EUV entering production

• More changes coming: forksheets, buried power rails, chiplets – 2.5D and 3D
 • Plurality of interconnect standards
MOS Transistor and Gate Delay Models

Modeling Goals

• Models that traverse design hierarchy
• Start with transistor models
• Gate delay models
• Use models to time the design
• Modeling variability

• Based on 251A, approach
 • Start simple
 • Increase accuracy, when needed
Device Models

- Transistor models
 - I-V characteristics
 - C-V characteristics
- Interconnect models
 - R, C, L
 - Covered in EE240A

Transistor Modeling

- Different levels:
 - Hand analysis
 - Computer-aided analysis (e.g. Matlab, Python, Excel, ...)
 - Switch-level simulation (some flavors of ‘fast Spice’)
 - Circuit simulation (Hspice)
- These levels have different requirements in complexity, accuracy and speed of computation
- We are primarily interested in delay and energy modeling, rather than current modeling
- But we have to start from the currents...
Transistor Modeling

- DC
 - Accurate I-V equations
 - Well behaved conductance for convergence (not necessarily accurate)

- Transient
 - Accurate I-V and Q-V equations
 - Accurate first derivatives for convergence
 - Conductance, as in DC

- Physical vs. empirical

from BSIM group

Goal for Today

- Develop velocity-saturated model for \(I_{on} \) and apply it to sizing and delay calculation
 - Similar approach as in 251A, just use an analytical model
Transistor I-V Modeling

- BSIM
 - Superthreshold and subthreshold models
 - Need smoothening between two regions
- EKV/PSP
 - One continuous model based on channel surface potential

Announcements

- Assignment 1 posted this week
 - No new lab this week
- Project proposals due next Thursday
- No class on Tuesday
Project proposals

• Title: Pick a meaningful title
• Authors, contact e-mail
• ½-page abstract
• 5 references

Long-Channel MOS On-Current
MOS I-V (BSIM)

Start with the basics:

\[I_{DS} = W C_{ox} (V_{GS} - V_{Th} - V_c(x)) \mu E \]

\[I_{DS} = W C_{ox} (V_{GS} - V_{Th} - V_c(x)) \mu (d V_c(x)/dx) \]

• When integrated over the channel:

\[I_{DS} = \frac{W}{L} \mu C_{ox} \left(V_{GS} - V_{Th} - \frac{V_{DS}}{2} \right) V_{DS} \]

Transistor saturates when \(V_{GD} = V_{Th} \) - the channel pinches off at drain's side.

\[I_{DS} = \frac{W}{2L} \mu C_{ox} (V_{GS} - V_{Th})^2 \]
MOS Currents (32nm CMOS with $L \gg 1 \mu m$)

Currents according to the quadratic model
Correct for long channel devices ($L \sim \mu m$)

Simulated 32nm Transistor

$L = 32nm$
Simulation vs. Model

Major discrepancies:
- shape
- saturation points
- output resistances

Velocity Saturation
Velocity Saturation

- Constant velocity
- Constant mobility (slope = μ)

Modeling Velocity Saturation

- **Fit the velocity-dependence curve**

\[v = \frac{\mu_{\text{eff}} E}{\left(1 + \left(\frac{E}{E_c}\right)^n\right)^{1/n}} \]

- NMOS: $n = 2$
- PMOS: $n = 1$
Modeling Velocity Saturation

- A few approximations: (a) \(n \to \infty \), (b) \(n = 1 \), (c) piecewise.
Approximation $n \to \infty$

1) $V = \mu_{\text{eff}} E$, $E < E_C$

$$I_{DS} = \mu_{\text{ox}} \frac{W}{L} \left((V_{GS} - V_{\text{th}}) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

2) $V = V_{\text{sat}}$, $E > E_C$

$$I_{DS_{\text{sat}}} = \mu_{\text{ox}} \frac{W}{L} \left((V_{GS} - V_{\text{th}}) V_{DS_{\text{sat}}} - \frac{V_{DS_{\text{sat}}}^2}{2} \right)$$

$V_{\text{DS_{sat}}} = ?$

Can be reduced to Rabaey DIC model by making $V_{\text{DS_{sat}}} = \text{const}$

Is this physically justified?

MOS Model from DIC, 2nd ed.

- $I_D = 0$ for $V_{GT} \leq 0$
- $I_D = k \frac{W}{L} \left(V_{GT} V_{\text{min}} - \frac{V_{\text{min}}^2}{2} \right) \left(1 + \lambda V_{DS} \right)$ for $V_{GT} \geq 0$
- with $V_{\text{min}} = \min(V_{GT}, V_{DS}, V_{DS_{\text{sat}}})$,
- $V_{\text{GT}} = V_{GS} - V_{T}$,
- and $V_T = V_{\text{th}} + \gamma \left[\sqrt{\phi_F + V_{SR}} - \sqrt{-2 \phi_F} \right]$

γ - body effect parameter

From Rabaey, 2nd ed.
Unified MOS Model

- Model presented is compact and suitable for hand analysis.
- Still have to keep in mind the main approximation: that V_{DSat} is constant. When is it going to cause largest errors?
 - When does E scale? – Transistor stacks.
 - But the model still works fairly well.
 - Except for stacks

Approximation $n = 1$, piecewise

- $n = 1$ is solvable, piecewise closely approximates

$$v = \begin{cases} \frac{\mu_{eff}E}{1 + E/E_C}, & E < E_C = \frac{2v_{sat}}{\mu_{eff}} \\ v_{sat}, & E > E_C \end{cases}$$

Sodini, Ko, Moll, TED’84
Toh, Ko, Meyer, JSSC’88
BSIM model
Drain Current

- We can find the drain current by integrating \(I_{DS} \)
 \[
 I_{DS} = W C_{ox} (V_{GS} - V_{Th} - V_{G}(x)) \ \nu
 \]

Linear:
 \[
 I_{DS} = \frac{\mu C_{ox} W}{1 + (V_{DS}/E_{C}L)} \frac{W}{L} (V_{GS} - V_{Th})V_{DS} - \frac{V_{DS}^2}{2}
 \]

In saturation:
 \[
 I_{DSat} = C_{ox} W v_{sat}(V_{GS} - V_{Th} - V_{Dsat})
 \]
 \[
 I_{Ds} = \frac{\mu C_{ox} W}{1 + (V_{Dsat}/E_{C}L)} \frac{W}{L} (V_{GS} - V_{Th})V_{Ds} - \frac{V_{Ds}^2}{2}
 \]

Drain Current in Velocity Saturation

- Solving for \(V_{Dsat} \)
 \[
 V_{Dsat} = \frac{(V_{GS} - V_{Th})E_{C}L}{(V_{GS} - V_{Th}) + E_{C}L}
 \]

And saturation current
 \[
 I_{Dsat} = \frac{W \mu_{eff} C_{ox}E_{C}L}{L} \frac{W}{2} \frac{(V_{GS} - V_{Th})^2}{(V_{GS} - V_{Th}) + E_{C}L}
 \]
Velocity Saturation

- E_L is V_{GS}-dependent
- Can calculate V_{DSat} ($V_{Th} \sim 0.4V$ in 28nm)

<table>
<thead>
<tr>
<th>V_{GS} [V]</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSat} [V]</td>
<td>0</td>
<td>0.05</td>
<td>0.11</td>
<td>0.18</td>
<td>0.25</td>
<td>0.33</td>
</tr>
</tbody>
</table>

- For $V_{GS} - V_{Th} \ll E_L$, V_{DSat} is close to $V_{GS} - V_{Th}$
- For large V_{GS}, V_{DSat} bends upwards toward E_L
- Therefore, E_L can be sometimes approximated with a constant term
 - But also need to understand the limitation of the approximation
Application of Models: NAND Gate

• 2-input NAND gate

Sizing for equal transitions:
• P/N ratio (β-ratio): 1 for L < 20nm, 1.6 for 20nm < L < 65nm, 2 for L > 90nm
• Upsizing stacks by a factor proportional to the stack height
Transistor Stacks

• With transistor stacks, V_{DS}, V_{GS} reduce.
• Unified model assumes V_{DSat} = const.
• For a stack of two, appears that both have exactly double R_{ekv} of an inverter with the same width.
• Therefore, doubling the size of each, should make the pull-down R equivalent to an inverter.

Velocity Saturation

• As $(V_{GS} - V_{Th})/ECL$ changes, the depth of saturation changes.

$$I_{DSat} = \frac{W \mu_{eff} C_{ox} ECL}{L} \frac{(V_{GS} - V_{Th})^2}{2 (V_{GS} - V_{Th}) + ECL}$$

• For V_{GS}, $V_{DS} = 1.0V$, ECL is ~0.75V
• With double length, ECL is 1.5V (in this model in 28nm)
• Stacked transistors are less saturated.
• $V_{GS} - V_{th} = 0.6V$, I_{DSat} ~ 2/3 of inverter I_{DSat} (64%)
• Therefore NAND2 should have pull-down sized 1.5X
• Check any library NAND2’s
• Current halved in a stack of 3.
Note about FinFETs

- Widths are quantized

Example: Logical Effort

- Older CMOS (>90nm)
 - $g_{inv} = 1$
 - $g_{NAND2} = \ldots$
 - $g_{NOR2} = \ldots$

- Planar CMOS (~28nm, bulk, FDSOI)

- FinFET (7nm)
 - $g_{inv} = 1$
 - $g_{NAND2} = \ldots$
 - $g_{NOR2} = \ldots$
Other Velocity Saturation Models

Other Models: Alpha Power Law Model

- Simple model, sometimes useful for hand analysis

\[I_{DS} = \frac{W}{2L} \mu C_{ox} (V_{GS} - V_{Th})^\alpha \]

Parameter \(\alpha \) is between 1 and 2.

Sakurai, Newton, JSSC 4/90
Alpha Power Law Model

• This is not a physical model

• Simply empirical:
 • Can fit (in minimum mean squares sense) to variety of α's, V_{th}
 • Need to find one with minimum square error – fitted V_{th} can be different from physical
 • Can also fit to $\alpha = 1$
 • What is V_{th}?

$K(V_{GS} - V_{THZ})$ Model ($\alpha = 1$)

Drain current vs. gate-source voltage
Saturation Current Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DS} = K\frac{W}{L}(V_{GS} - V_{TH})$</td>
<td>Delay estimates with $V_{DD} >> V_{TH}$</td>
</tr>
<tr>
<td>$I_{DS} = \frac{W}{L} \mu C_{ox} (V_{GS} - V_{TH})^2$</td>
<td>Long channel devices (rare in digital)</td>
</tr>
<tr>
<td>$I_{DS} = \frac{W}{L} \mu C_{ox} (V_{GS} - V_{TH})^\alpha$</td>
<td>Delay estimates in a wider range of V_{DD}'s</td>
</tr>
<tr>
<td>$I_{DS} = \frac{W}{L} \mu C_{ox} \left((V_{GS} - V_{TH})V_{DSat} - \frac{V_{DSat}^2}{2}\right)$</td>
<td>Easy to remember, does not handle stacks correctly</td>
</tr>
<tr>
<td>$I_{DS} = \frac{W}{L} \mu C_{ox} \left(E_{L}(V_{GS} - V_{TH})^2\right)$</td>
<td>Handles stacks correctly, sizing</td>
</tr>
</tbody>
</table>

Next Lecture

- Delay models