March 22, 2022, EETimes: Nvidia Launches Next-Gen GPU Architecture: Hopper

Nvidia unveiled its next-generation GPU architecture — named Hopper, alongside the new flagship GPU using the Hopper architecture, the H100. Perhaps surprisingly, Nvidia has not opted to go down the trendy chiplets route favored by Intel and AMD for their mammoth GPUs. While the H100 is the first GPU to use HBM3, its compute die is monolithic, 80 billion transistors in 814mm² built on TSMC’s 4N process. Memory and compute are packaged via TSMC’s CoWoS 2.5D packaging.

Recap

- SRAM takes a half of a die in modern chips
 - SRAM scaling is slowing down
- Static read and write margins
 - Enhanced by using assist techniques
Basic Ideas

• Dynamically change voltages
• Negative BL helps with writing
 • Lower VDD (V_{CELL}) helps with writing
 • Higher WL helps with writing, lower hurts
• Lower WL helps with read, higher hurts

• Half-select condition: WL selected for write, but write operation is masked (BLs stay high)
SRAM In Practice

• 7nm AMD Zen2 (Singh, ISSCC’20)

Moving bitline precharge to VDD creates both bitcell stability and writeability challenges

High level of configurability allows for silicon flexibility
Announcements

• Assignment 2 due on Monday
 • Quiz 2 next Tuesday

SRAM Peripheral Circuits
Peripheral Circuits in SRAM

- Decoders (and pre-decoders)
- Column circuitry: read, write, multiplex, mask
- Write assist techniques
- Read assist techniques
- Redundancy
- BIST
- ECC
- Power management

SRAM Array

- SRAM periphery:
 - Decoders (covered in EECS251A)
 - Bitline design and sense-amps
Sense-Amp Trigger

- Sense-amp trigger needs to be timed carefully
 - Too early: Incorrect evaluation
 - Too late: Unnecessary timing margin

Aside: Delay Lines, Replicas and Time Amplification

- We will encounter it several times in this course
 - Used in a wide range of mixed-signal circuits

- A simple delay line

 ![Diagram](image1)

 Time-to-digital converter (TDC)

 Start-Stop difference read out as a thermometer-coded binary value
 Resolution set by inverter delay

 Sub-inverter delays are hard to generate
 Small α requires large area

 [Lee, Abidi, JSSC 4/08]
Sense-Amp Triggering

- Replica bitline

Replica delay tracks better across corners
But still mistracks across a wide range of supplies
Amrutur, Horowitz, JSSC 8/98

Time Amplification

- Time amplified through metastability (by using setup time characteristics)

Lee, Abidi, JSSC 4/08
Voltage Scaling: Multiplicative Replica Bitline

- Conventional replica

 \[n \text{ replica cells discharging replica BL in parallel to reduce the current variation by } \sqrt{n} \]

 Threshold for discharge is set accordingly to \(V_{DD} - n V_{os} \)

 Limits \(n \) to \(\sim 2-4 \)

- Multiplicative replica

 Programmable replica delay

 Multiplicative replica scales the delay, w/o increasing variance

Niki, JSSC'11
Redundancy and ECC

- Redundancy
 - Spare columns (or rows)
 - Selected at test via eFuse
 - Possible to dynamically program redundancy

- ECC
 - Error detection/correction codes
 - Parity
 - SECDED
 - DECTED
Redundancy

- Principle

Rows

Columns

McPartland, CICC’00.

Redundancy

- Effectiveness (Bickford, 2008)

Figure 1: Modeled Yield impact comparison for 65 nm SRAM compiler. Vmin cell fail rate used in analysis shown in the left chart is 5.10 sigma. Vmin cell fail rate used in the analysis shown in the right chart is 5.20 sigma. 147 Rbit segment is a standardized array size block segment used for comparison purposes.
Soft Errors

• From packaging and cosmic rays

• Packaging:
 • Lead ore contains Po-210 -> (5 days) -> Bi-210 -> (22.3 years) -> Pb-210
 • Or Po-210 -> (138.4 days) -> Pb-210
 • Need ‘old lead’

• Cosmic rays
 • Large particles collide with Earth’s atmosphere to produce alpha (and other) particles

Error Correction

• Parity (SED)
 • \(p = d_7 \oplus d_6 \oplus d_5 \oplus d_4 \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \)

• SECDED

• DECTED
Multi-bit Errors

Ref.: K. Osada et al., (11).

Kawahara, ISSCC'07 tutorial

Multi-bit Errors

Ref.: K. Osada et al., (11)

Kawahara, ISSCC'07 tutorial
Multi-bit Errors

Equivalent circuits of 16 SRAM cells between well tap

Multi-bit Errors: Interleaving

Placement at alternate addresses

Data is not corrected

All data is corrected

Neutron peak energy: 63.5 MeV
Total fluency: 6.14×10^{10}/cm2

This work

-99.5%
6T SRAM Alternatives

• Dual-port read/write capability (register-file-like cells)
• N0, N1 separates read and write
 • No Read SNA constraint
 • Half-selected cells still undergo read
• Stacked transistors reduce leakage

L. Chang, VLSI Circuits 2005
eDRAM

- Process cost: Added trench capacitor

Barth, ISSCC'07, Wang, IEDM'06

Crosspoint Memories

Crosspoint Memories

- Neale, Nelson, Moore, Electronics'70
 - 16 x 16 array (256b) of 'read-mostly memory'

Crosspoint Memory

- Four modes
 - Form
 - Set
 - Reset
 - Read

Endurance
3D Crosspoint Arrays

- Kau, IEDM’09

Crosspoint Arrays

- Read and sneak currents

Bae, TED 4/17
Summary

• SRAM periphery
 • Decoders
 • Assist circuits
 • Sense amp timing replicas

• 6-T SRAM alternatives
 • 8-T SRAM
 • eDRAM
 • Crosspoint arrays (e.g. RRAM)

Next Lecture

• Low-power design
 • Power-performance tradeoffs