Broadcom launches Wi-Fi 7 chips
April 13, 2022 Nitin Dahad
Broadcom’s new family of Wi-Fi 7 chips will help implement the speed, latency and determinism, and features like multi-link operation offered by the new Wi-Fi standard.

Broadcom’s new Wi-Fi 7 product family. (Image: Broadcom)
Recap

• Limiting transistor leakage
 • Multi-threshold designs
 • Transistor stacking
 • Sleep modes
 • Power gating
Dynamic Threshold Scaling
Dynamic Body Bias

• Similar concept to dynamic voltage scaling

• Control loop adjusts the substrate bias to meet the timing/leakage goal
 • Can be used just as runtime/sleep

• Limited range of threshold adjustments in bulk (<100mV)
 • Limited leakage reduction (<10x)

• Works well in FDSOI (80-85mV/V, with ~1.8V range)

• No delay penalty
 • Can increase speed by forward bias

• Energy cost of charging/discharging the substrate capacitance
 • but doesn’t need a regulator
FDSOI and Bulk

• Bulk CMOS
 - Leakage paths through bulk
 - RDF dominates local variability
 - Diodes and B2B tunneling limit back-bias range

UTBB FD-SOI
 - Thin body for short-channel control
 - No doping – less RDF
 - Extended back-bias range
FDSOI Wells and Back Bias

- **Flip-well (LVT)**
 - $V_{DDS, \text{nom}} = GND_{S, \text{nom}} = 0V$
 - Forward body bias $V_{BSN} > 0V$
 - $0.3V < GND_{S} < (3V)$
 - Limit due to diodes, BOX
 - Can forward bias 2-3V each

- **Typical (RVT)**
 - $GND_{S, \text{nom}} = 0V$, $V_{DDS, \text{nom}} = V_{DD}$
 - Reverse body bias, $V_{BSN} < 0V$
 - $(-3V) < GND_{S} < V_{DD}/2+0.3V$
 - Limit due to diodes, BOX
 - Can reverse bias 2-3V each

P. Flatresse, ISSCC'13
Back-Bias in FDSOI

• $\gamma = 85\text{mV/V}$ body coefficient, and extended voltage range
 • Lower coefficient and voltage range in bulk, finFET

D. Jacquet, JSSC 4/14
Multi V_{Th}

- No channel implant in 28FDSOI
 - No multi V_{Th}
- Can’t abut wells
 - RVT and LVT require different well biases

D. Jacquet, JSSC 4/14
Back Bias in FDSOI

- Triple well (deep N-Well, DNW) allows for separate back bias
- Layout penalty; capacitance to drive
Digital Logic: UPF

- Supply, back-bias defined in Unified Power Format (UPF)
- Or Common Power Format (CPF)
- Handled by synthesis, place and route tools

```
UNF description of PT_TOP with GND, VDD, GNDs and VDDS supplies.
create_power_domain PD_TOP
create_supply_port GND
create_supply_port VDD
create_supply_net GND -domain PD_TOP
connect_supply_net GND -ports {GND}
create_supply_net VDD -domain PD_TOP
connect_supply_net VDD -ports { VDD }
set_domain_supply_net PD_TOP -primary_power_net VDD -primary_ground_net GND

# Body-bias specification
create_supply_port VDDS
create_supply_port GNDS
create_supply_net VDDS -domain PD_TOP
connect_supply_net VDDS -ports { VDDS vddgndvdds*/VDDSCORE }
create_supply_net GNDS -domain PD_TOP
connect_supply_net GNDS -ports { GNDS gnds*/VDDCORE1V8 }
create_supply_set back_bias_set \\
-function {nwell VDDS} \\
-function {pwell GNDS} \\
-reference_gnd {GND} \\
create_power_domain PD_TOP -update -supply bias
associate_supply_set back_bias_set -handle PD_TOP.bias
```

M.Blagojevic, Ph.D. Dissertation, ISEP 2017
Digital Logic - Implementation

- Well taps added explicitly
 - Difference from bulk

- Back bias straps
 - Low DC current
 - Except for very fast transitions
Dynamic Body Bias (Bulk)

ISSCC'96 pp.166-167

V_{DD}+3.3V @standby

V_{DD}+0.5V @active

- 0.55V @standby

- 0.15V @active

V_{th.p}

V_{th.n}:

0.15V @active

0.55V @standby

0.5V @active

- 3.3V @standby

VT

n-well V_{BB,p}

V_{DD}

GND

p-well V_{BB,n}

VTCMOS:

Dynamic Vth control for low power through backgate bias

example:

(SATS) or (SPR) or (SATS + SPR)
Dynamic Body Bias (Bulk)

Active mode
Forward body bias (FBB)
Local V_{CC} tracking

Idle mode
Reverse body bias (RBB)
Triple well needed

Tschanz, ISSCC’03
Body Bias Layout

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ALU core LBGs</td>
<td>30</td>
</tr>
<tr>
<td>Number of sleep transistor LBGs</td>
<td>10</td>
</tr>
<tr>
<td>PMOS device width</td>
<td>13mm</td>
</tr>
<tr>
<td>Area overhead</td>
<td>8%</td>
</tr>
</tbody>
</table>
Total Active Power Savings
(Fixed activity: $\alpha = 0.05$)

Reference: 450mV FBB to core with clock gating, 1.28V, 4.05GHz, 75°C
Generating Back-Bias

- Tradeoff – speed of charging and discharging well caps
- Often measure V_{BB} indirectly (leakage)
- Challenge: Generating $-V_{SS}$
- 28nm FDSOI implementation

D. Jacquet, VLSI 2013
Generating Back Bias

- Fast and wide voltage range back-bias in FDSOI

Switched capacitors generate negative bias and pump substrate
Supply/Process Compensation

- Able to track ~200mV supply droops and maintain constant frequency (measured by a replica) by back-bias adjustments
Dynamic Frequency Loop in FDSOI

Quelen, ISSCC’18
Announcements

• Quiz 3 today
• Homework 4 due next week
5.0 Optimal V_{DDr}, V_{Th}
Dynamic Voltage Scaled Microprocessor

External V_{DD} 3.3V±10%
Internal V_{DDL} 0.8V~2.9V ±5%

Power Dissipation (mW) vs Operating Frequency (MHz)

![Graph showing Power Dissipation vs Operating Frequency]

Measurement
Theory

CMOS: V_{DD}=3.3V
VS scheme: Internal V_{DD} optimized

Courtesy: Prof. Kuroda
Adapting V_{DD} and V_{TH}

• Adapting both V_{DD} and V_{TH} during runtime

• V_{TH} is much less sensitive

Miyazaki, ISSCC’02
Adapting V_{DD} and V_{TH}

Miyazaki, ISSCC'02

Dynamic Voltage Scaling

Adaptive Supply and Body bias

Power (µW)

0 20 40 60 80 100 120 140

0 10 20 30 40 50 60

Frequency (MHz)

Miyazaki, ISSCC'02
Optimal V_{DD}, V_{Th}

• Adjusting V_{DD}, V_{Th} trades of energy and delay

• We studied energy-limited design
 • And alternate ways for optimizing energy and delay together
 • E.g. energy-delay product (EDP)
 • Or E^nD^m, $n,m > 1$
Optimal EDP Contours

- Plot of EDP curves in V_{DD}, V_{Th} plane
Sizing, Supply, Threshold Optimization

Reference Design: $D_{\text{ref}} (V_{dd}^{\max}, V_{th}^{\text{ref}})$

<table>
<thead>
<tr>
<th>Topology</th>
<th>Inverter</th>
<th>Adder</th>
<th>Decoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(E_{Lk}/E_{SW})^{\text{ref}}$</td>
<td>0.1%</td>
<td>1%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Large variation in optimal circuit parameters $V_{dd}^{\text{opt}}, V_{th}^{\text{opt}}, W^{\text{opt}}$

Technology parameters $(V_{dd}^{\max}, V_{th}^{\text{ref}})$ rarely optimal
Result: E-D Tradeoff in an Adder

Energy efficient curve $f(W,V_{dd},V_{th})$

-40% delay improvement without energy penalty

80% of energy saved without delay penalty

40% delay improvement without energy penalty

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>W</th>
<th>V_{dd}</th>
<th>V_{th}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{ref},E_{ref})</td>
<td>∞</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>(D_{ref},E_{min})</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D_{min},E_{ref})</td>
<td>22</td>
<td>16</td>
<td>22</td>
</tr>
</tbody>
</table>
Energy-constrained delay

- Active power
 \[P_{act} = \alpha f C V_{DD}^2 \]
 \[f = 1 / L_D t_P \]

- Leakage power
 \[P_{leak} = I_0 e^{\frac{-V_{Th} - \gamma V_{DD}}{S V_{DD}}} \]

- Eliminate one variable \(V_{Th} \) and find \(P_{min}(V_{DD}) \)

Nose, ASP-DAC’00
Minimum energy: $E_{Sw} = 2E_{Lk}$

- Large $(E_{Lk}/E_{Sw})_{opt}$
- Flat E_{Op} minimum
- Topology dependent

$$\left(\frac{E_{Lk}}{E_{Sw}} \right)_{opt} = \frac{2}{\ln \left(\frac{L_d}{\alpha_{avg}} \right)} - K$$

Optimal designs have high leakage $(E_{Lk}/E_{Sw} \approx 0.5)$
Subthreshold Optimum

$f = 30\text{kHz}$

Minimum is independent of V_T

Calhoun, JSSC 9/05
Summary

• Body effect weak in bulk CMOS
 • Strong in FDSOI

• Dynamic threshold scaling
 • Primarily for leakage control, process compensation

• Optimal thresholds
 • Total energy is minimized with 1/3 being leakage
Next Lecture

• Clock generation and distribution