Broadcom launches Wi-Fi 7 chips

Recap
- Limiting transistor leakage
- Multi-threshold designs
- Transistor stacking
- Sleep modes
- Power gating

Dynamic Body Bias
- Similar concept to dynamic voltage scaling
- Control loop adjusts the substrate bias to meet the timing/leakage goal
 - Can be used just as runtime/sleep
 - Limited range of threshold adjustments in bulk (<100mV)
 - Limited leakage reduction (<10x)
 - Works well in FDSOI (80-85mV/V, with ~1.8V range)
 - No delay penalty
 - Can increase speed by forward bias
 - Energy cost of charging/discharging the substrate capacitance
 - but doesn’t need a regulator

FDSOI and Bulk
- Bulk CMOS
- Leakage paths through bulk
- RDF dominates local variability
- Diodes and B2B tunneling limit back-bias range

FDSOI Wells and Back Bias
- Flip-well (LVT)
 - \(V_{DD}, \text{nom} = G_{NDS}, \text{nom} = 0V \)
 - Forward body bias \(V_{BSN} > 0V \)
 - \(0.3V < G_{NDS} < (3V) \)
 - Can forward bias 2-3V each
- Typical (RVT)
 - \(V_{DD}, \text{nom} = G_{NDS}, \text{nom} = V_{DD} \)
 - Reverse body bias \(V_{BSN} < 0V \)
 - \((-3V) < G_{NDS} < V_{DD}/2+0.3V \)
 - Can reverse bias 2-3V each

Back-Bias in FDSOI
- \(\gamma = 8.5mV/V \) body coefficient, and extended voltage range
 - Lower coefficient and voltage range in bulk, FinFET

Multi \(V_{Th} \)
- No channel implant in 2B-FDSOI
- No multi \(V_{Th} \)
- Can’t abut wells
- RVT and LVT require different well biases
Back Bias in FDSOI

- Triple well (deep N-Well, DNW) allows for separate back bias
- Layout penalty; capacitance to drive

Digital Logic - Implementation

- Well taps added explicitly
- Difference from bulk

Dynamic Body Bias (Bulk)

- **Active mode**
 - Forward body bias (FBB)
 - Local V_{CC} tracking

- **Idle mode**
 - Reverse body bias (RBB)
 - Triple well needed

Generating Back-Bias

- Tradeoff – speed of charging and discharging well caps
- Often measure V_{BB} indirectly (leakage)
- Challenge: Generating $-V_{SS}$

Body Bias Layout

- Sleep transistor LBGs
- ALU core LBGs

Total Active Power Savings

- (Fixed activity: $a = 0.05$)

- Reference: 450mV FBB to core with clock gating, 1.28V, 4.05GHz, 75°C

Digital Logic: UPF

- Supply, back-bias defined in Unified Power Format (UPF)
- Or Common Power Format (CPF)
- Handled by synthesis, place and route tools

```
create_power_domain PD_TOP
create_supply_port GND
create_supply_port VDD
create_supply_net GND -domain PD_TOP
connect_supply_net GND -ports {GND}
create_supply_net VDD -domain PD_TOP
connect_supply_net VDD -ports {VDD}
set_domain_supply_net PD_TOP -primary_power_net VDD -primary_ground_net GND

# Body-bias specification
create_supply_port VDDS
create_supply_port GNDS
create_supply_net VDDS -domain PD_TOP
connect_supply_net VDDS -ports {VDDS vddgndvdds*/VDDSCORE}
create_supply_net GNDS -domain PD_TOP
connect_supply_net GNDS -ports {GNDS gnds*/VDDCORE1V8}
create_supply_set back_bias_set 
  -function {nwell VDDS} 
  -function {pwell GNDS} 
  -reference_gnd {GND} 
create_power_domain PD_TOP -update -supply bias
associate_supply_set back_bias_set -handle PD_TOP.bias
```

EECS251B L22 OPTIMAL THRESHOLDS

- Digital Logic: UPF
- Dynamic Body Bias (Bulk)
- Body Bias Layout
Generating Back Bias

* Fast and wide voltage range back-bias in FDSOI

Switched capacitors generate negative bias and pump substrate

Supply/Process Compensation

* Able to track ~200mV supply droops and maintain constant frequency (measured by a replica) by back-bias adjustments

Dynamic Frequency Loop in FDSOI

Announcements

* Quiz 3 today
* Homework 4 due next week

Dynamic Voltage Scaled Microprocessor

Adapting V_{DD} and V_{TH}

* Adapting both V_{DD} and V_{TH} during runtime
 * V_{TH} is much less sensitive

Adapting V_{DD} and V_{TH}

Miyazaki, ISSCC'02
Optimal V_{DD}, V_{th}

- Adjusting V_{DD}, V_{th} trades of energy and delay
- We studied energy-limited design
 - And alternate ways for optimizing energy and delay together
 - E.g. energy-delay product (EDP)
 - Or E^*P^*, $n,m > 1$

We studied energy-limited design

- E.g. energy-delay product (EDP)
- Or E^*P^*, $n,m > 1$

Optimal EDP Contours

- Plot of EDP curves in V_{DD}, V_{th} plane

V_{DD}, V_{th}

- Large variation in optimal circuit parameters V_{DD}^{opt}, V_{th}^{opt}

Technology parameters (V_{DD}^{max}, V_{th}^{min}) rarely optimal

Sizing, Supply, Threshold Optimization

<table>
<thead>
<tr>
<th>Reference Design: D^{ref} (V_{DD}^{max}, V_{th}^{ref})</th>
<th>Topology</th>
<th>Inverter</th>
<th>Adder</th>
<th>Decoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^{ref} (V_{DD}^{max}, V_{th}^{ref})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Large variation in optimal circuit parameters V_{DD}^{opt}, V_{th}^{opt}

Energy-constrained delay

- Active power $P_{act} = \alpha f CV_{DD}^2$
 $f = 1/\tau_D$
- Leakage power $P_{leak} = I_d \theta S V_{DD}$
- Eliminate one variable (V_{in}) and find $P_{max}(V_{DD})$

Nose, ASP-DAC'00

Optimal EDP Contours

- Plot of EDP curves in V_{DD}, V_{th} plane

Energy efficient curve $f (W/V_{DD}, V_{th})$

Minimum energy: $E_{Sw} = 2 E_{Lk}$

- Large $(E_{Lk}/E_{Sw})^{opt}$
- Flat E_{Sw} minimum
- Topology dependent

$E_{Sw}^* = \frac{2}{ln(\theta_{avg})}$

Optimal designs have high leakage $(E_{Lk}/E_{Sw} = 0.5)$

Summary

- Body effect weak in bulk CMOS
 - Strong in FDSOI
- Dynamic threshold scaling
 - Primarily for leakage control, process compensation
- Optimal thresholds
 - Total energy is minimized with 1/3 being leakage

Subthreshold Optimum

- $f = 30kHz$
- Minimum is independent of V_{th}

Result: E-D Tradeoff in an Adder

- 80% of energy saved without delay penalty
- 40% delay improvement without energy penalty

Energy-constrained delay

- Active power $P_{act} = \alpha f CV_{DD}^2$
 $f = 1/\tau_D$
- Leakage power $P_{leak} = I_d \theta S V_{DD}$

Energy-constrained delay

- Active power $P_{act} = \alpha f CV_{DD}^2$
 $f = 1/\tau_D$
- Leakage power $P_{leak} = I_d \theta S V_{DD}$
- Eliminate one variable (V_{in}) and find $P_{max}(V_{DD})$

Nose, ASP-DAC'00

Optimal EDP Contours

- Plot of EDP curves in V_{DD}, V_{th} plane

Energy efficient curve $f (W/V_{DD}, V_{th})$

Minimum energy: $E_{Sw} = 2 E_{Lk}$

- Large $(E_{Lk}/E_{Sw})^{opt}$
- Flat E_{Sw} minimum
- Topology dependent

$E_{Sw}^* = \frac{2}{ln(\theta_{avg})}$

Optimal designs have high leakage $(E_{Lk}/E_{Sw} = 0.5)$

Summary

- Body effect weak in bulk CMOS
 - Strong in FDSOI
- Dynamic threshold scaling
 - Primarily for leakage control, process compensation
- Optimal thresholds
 - Total energy is minimized with 1/3 being leakage
Next Lecture

- Clock generation and distribution