Recap

• Basics of phase-locked loops
• Digital PLLs
Delay-Locked Loops

Clock Generation

Delay-Locked Loop (Delay Line Based)

Phase-Locked Loop (VCO/DCO-Based)
Delay-Locked Loop

- First order loop: inherently stable
- No filtering of input jitter
- Constant frequency (no synthesis)
- No phase error accumulation

DLL Locking

Delay-Locked Loop

\[D_O(s) = K_{PD} \frac{1}{sC} I_{CP} K_F F_{REF} = \frac{1}{s} K_{PD} K_F K_{DL} \]

\[H(s) = \frac{D_O(s)}{D_I(s)} = \frac{K_{PD} K_F K_{DL}}{s + K_{PD} K_F K_{DL}} \]

- \(\omega_N \) is an order of magnitude below \(F_{REF} \)
- Use of DLLs requires low-jitter input
- VCDL must span adequate delay range + reset to min delay
- Noise sources:
 - Delay line (Supply sensitivity)
 - Clock buffers that follow
 - Device noise (small)
Announcements

• Final is in-class 4/28
 • 80min, 9:40am-11am

• Project presentations 5/5
 • 9am – 12:30pm
 • BWRC
 • 12min + 3min Q&A

Clock Distribution
Clock Distribution

- Tree
- Mesh
- Grid
- H-Tree
- X-Tree
- Tapered H-Tree

Example (Older) Clock System

- IBM Power 4

Restle, ISSCC’02
Clock Grid

One PLL with multiple DLLs

- Single PLL, and two cores vary frequency through digital frequency dividers (DFDs) and DLLs
 - SLCB: Second-Level Clock Buffer
 - CVD: Clock Vernier Device – fine (static) delay tuning

Fischer, JSSC 1/06
Deskewing and Synchronization

Clock Domain Synchronization

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Mesochronous</td>
<td>Same</td>
<td>Constant offset</td>
</tr>
<tr>
<td>Plesiochronous</td>
<td>Small difference</td>
<td>Slowly varying</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Different</td>
<td>Arbitrary</td>
</tr>
</tbody>
</table>
Deskew System (Mesochronous)

Geannopoulos, ISSCC’98

Deskew System

Rusu, ISSCC’00
Deskew Buffer

- Essentially a DLL to align regional clock with ref. clock

Clock Subsystem

- Intel Xeon – Bowhill, ISSCC’15
 - Independent clocks for 4-18 cores
 - Self-biased (SB) and LC PLLs
Clock Domain Crossings

• Bowhill, ISSCC’15

Brute-Force Synchronizer

Can be metastable, if setup/hold are violated

• Cascaded flip-flops reduce the probability of metastability
Clock Crossing FIFOs

• FIFO for clock crossings

Supply Generation
Supply Generation

- **Linear**
 - Series or shunt
 - Linear regulation
 - Quiet
 - Inefficient (unless Vin-Vout is small)

- **Switching (Capacitive)**
 - Limited efficiency
 - Poor regulation
 - Voltage ripples

- **Switching (Magnetic)**
 - Efficient
 - Require external components
 - Noisy

Linear vs. Switching Regulators

![Linear Regulator Diagram](image1)

Efficiency $\eta < V_{out}/V_{in}$

![Switching Regulator Diagram](image2)
Linear Voltage Regulator

Negative feedback sets low supply resistance
Voltage regulated to desired level

E.g. IBM Power7 has 48 linear regulators

Switching Supply

• Buck Converter

Pulse-Width Modulation (PWM) regulates V_{out}

High switching frequency, interleaving reduce ripple
Integrated VR Technology
- "Common Cell" Architecture - 20 cells
- Architecture supports flat efficiency curve
- Fine grain power management
 - Allows for multiple voltage rails
- Telemetry and Margining features
- Active Voltage Positioning for current sharing and balance
- Control features, including: JTAG, FPGA, Test/BIST

Power cell - 2.8 mm²

Review: Power Cell Architecture
- **Each Power cell = Mini VR**
 - Up to 25A rating* - tested
 - Programmable switching frequency 30MHz to 140MHz
 - Ring coupled inductor topology
- **16 phases per power cell, 320 phases per chip**
 - High phase count reduces noise, ripple
 - High granularity
 - Cell shedding
 - Bridge shedding
- **BIST**
 - Self-load and characterization system.

* Thermally constrained
Intel Broadwell

- Inductors moved to a small PCB

![Image of Intel Broadwell with Inductors moved to a small PCB]

Switched-Capacitor Supply

![Diagram of Switched-Capacitor Supply]

- Interleaving reduces ripple, but lowers efficiency

\[
\begin{align*}
V_{\text{out}} &= V_{\text{Load}} \\
V_{\text{Fly}} &= V_{\text{Vin}}
\end{align*}
\]
What happens with supply when load changes?

http://www.research.ibm.com/people/r/restle/Animations/DAC01top.html

Power Delivery

- Typical model

Wong, JSSC’06
Supply Resonances

- First droop
 - Package L + on-die C
- Second droop
 - Motherboard + package decoupling
- Third droop
 - Board capacitors

Clock and Supply

- Large digital systems can have large voltage transients
 - Can we filter impact of voltage on a clock generator?

Kurd, JSSC'09
Clock and Supply

- IBM Power7, with one PLL per core

Lefurgy, MICRO’11

How to model

- Abstracted delay line

Wong, JSSC’06

Period modulation from successive modulated delays
Droop Detection

- Hashimoto, JSSC 4/18

Summary

- DLLs are used for phase alignment, deskewing
- Modern SoCs are globally asynchronous, locally synchronous
- Supply regulators
- Clock and supply interact
Next Lecture

• Wrap-up