EECS251B
Advanced Digital Circuits and Systems

Lecture 9 – Modern Technology and Chiplets

Vladimir Stojanović

Tuesdays and Thursdays 9:30-11am
Cory 521
Recap

• Technology affects circuit design
 • Optimized for standard cell, SRAM density
 • Recent scaling not uniform per layer

• Lithography restricts layer orientation, length quantization
 • Favors layout regularity
 • Has implications on variability

• FinFETs add more restrictions (width quantization)
Modern Bulk/finFET/FDSOI processes
Some of the Process Features (Designer’s Perspective)

1. Shallow-trench isolation
2. High-k/Metal-gate technology
3. Strained silicon
4. Thin-body devices (28nm, and beyond)
5. Copper interconnects with low-k dielectrics
1. Shallow Trench Isolation

• Less space needed for isolation

• Some impact on stress (STI expansion can affect mobility)
2. Hi-k/Metal gate

Replacement gate technology (Intel) – early version at 45nm

K. Mistry, IEDM’07

S. Natarajan, IEDM’08
3. Strained Silicon

Compressive channel strain
30% drive current increase
in 90nm CMOS

Tensile channel strain
10% drive current increase
in 90nm CMOS

Intel
Intel’s Strained Si Numbers

Performance gains:

<table>
<thead>
<tr>
<th></th>
<th>90 nm</th>
<th></th>
<th>65 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NMOS</td>
<td>PMOS</td>
<td>NMOS</td>
</tr>
<tr>
<td>μ</td>
<td>20%</td>
<td>55%</td>
<td>35%</td>
</tr>
<tr>
<td>IDSAT</td>
<td>10%</td>
<td>30%</td>
<td>18%</td>
</tr>
<tr>
<td>IDLIN</td>
<td>10%</td>
<td>55%</td>
<td>18%</td>
</tr>
</tbody>
</table>

S. Thompson, VLSI’06 Tutorial
β-Ratio

• $\beta = \frac{W_p}{W_n}$

From Rabaey et al, DIC, 2nd ed, for 250nm CMOS

\[\mu_p/\mu_n = 3.5 \]

\[W_2 \sim 2 \]

\[W_1 = 1 \]
Strained Silicon: Implications on Sizing

- No strain
 \[W_2 \sim 2 \]
 \[W_1 = 1 \]

- Strained Si
 \[W_2 = 1.6 \]
 \[W_1 = 1 \]
5. Thin-Body Devices

- 28nm FDSOI

- 22/14nm finFET

N. Planes, VLSI'2012

C. Auth, VLSI'2012
5. FinFETs

• FinFET scaling

22/20nm 16/14nm 10nm

Intel, IEDM’12 Intel, VLSI’14 Intel, IEDM’17

• Track scaling (MP different than FP)

Garcia Bardon, IEDM’16

• N-P spacing
FinFETs and gate P/N sizing

- The use of strain closes the gap between N and P on currents to ~1:1
- No strain
- Strained planar Si
- FinFET
5. FDSOI

2012 2013 2014 2015 2016 2017

28FD-SOI (Samsung)

28FDSOI (STMicroelectronics)

22FDX (GLOBALFOUNDRIES)

12FDX (GLOBALFOUNDRIES)

18FDS (Samsung)
5. Interconnect – low-K dielectrics

J. Hartmann, ISSCC’07
Interconnect: Chemical Mechanical Polishing (CMP)

Cu interconnect: Dual damascene process

- Ta barrier layer to prevent Cu from diffusing into Si
- Etch stop (SiN)
- Metal density rules (20%-80%) (nowadays much tighter)
- Slotting rules
- Also: Antenna rules

Dishing on larger areas due to Cu softness
Interconnect: Antenna rules

Caused by charge accumulated on the metal wire during plasma etch
Formulated as max wire area contacting the gate of certain area
Design solutions
 - Jumper insertion – break signal wires and route to upper metal layers
 - Dummy transistors - addition of extra gates reduces the gate to wire cap ratio
 - Embedded protection diode (reverse bias)
 - Diode insertion after P&R
DRAM Scaling

- DRAM density scaling:
 - Transistor
 - Cap
 - Integration

- DRAM capacity/bandwidth

K. Kim, IEDM, ’21
Flash Scaling

- Density and architecture scaling

K. Kim, IEDM,’21
Chiplets
Die Size Trend

- To increase functionality and performance, die sizes have been increasing
 - Yield, cost tradeoffs

L. Su, HotChips’19 Keynote
Migration to Chiplets

• Split the product into multiple dies
 • Same or mixed technologies

• Increase functionality, performance @ lower cost

• Mix technologies

Plot from K.Kim, IEDM’21
2D and 2.5D Chiplet Interfaces

• High-density interfaces have been evolving over the past decade
Interconnect Density Scaling

- Bump density and BW/edge or BW/area

Adapted from R. Koduri keynote, Hot Chips 2020
Scaling is scale-out ... Getting to 1M cores/system

On-chip integration: 25x
Tech-scaling: 50x
Packaging: 2x
Scale-out: 400x

Adapted from R. Koduri keynote, Hot Chips 2020
Some Open Issues

• High-value (e.g. hyperscale) products are driving the chiplet technology
 • What about sub-150mm² dies?

Cost of disintegration:
 • AIB 1.0: 12mm² in 16nm @ $0.1/mm² = $1.2 on each side
 (50k mm² on a $5k 12-in wafer;
 3nm wafers are $20k – chiplet interface is 2 x $4.8)
 • Substrate cost: >$10 (could be >$100)
 • Test escape losses
 Sum: $25+ (but can be >$100)

Chiplets are not for free

Can they offset the NRI costs?
Make medium volume ASICs affordable?
Summary

• FinFET and FDSOI processes deployed now
 • Expected to be replaced by nanosheets

• Lithography and manufacturing restrict design rules
 • Need to be aware of implications on design
 • EuV entering production

• More changes coming: forksheets, buried power rails, chiplets – 2.5D and 3D
 • Plurality of interconnect standards
Universal Chiplet Interconnect Express (UCle) Overview - Electrical Physical Layer
UCle: Standard Package Module

- Key attributes of electrical specification include:
 - 4, 8, 12, **16**, 24 and 32 GT/s data rates
 - Advanced and **Standard** package interconnects
 - Clock and power gating mechanisms
 - Single-ended unidirectional data signaling
 - DC coupled point-to-point interconnect
 - Forwarded clock for transmit jitter tracking
 - Matched length interconnect design within a module
 - Tx driver strength control and unterminated Rx for Advanced Package
 - Tx termination and data rate and channel-reach-dependent Rx termination for Standard Package

- Multiple modules can be integrated on an SoC

- Low speed sideband bus for initialization, Link training and configuration reads/writes
 - Sideband consists of a single-ended sideband data Lane and single-ended sideband Clock lane in both directions (transmit and receive)
UCle: Interface Partitioning

Protocol Layer

Die-to-Die Adapter

Physical Layer Logical

Sideband/Global

Electrical/AFE [k slices]

CXL2.0, CXL3.0, PCIeGen6, Streaming

Flit aware D2D interface (FDI)

ARB/MUX (when applicable)
CRC Retry (when applicable)
Link State Management
Parameter Negotiation

Link Training
Byte to Lane mapping
Sideband training and transfers

Analog Front-End
Clock Forwarding

- Raw D2D interface (RDI)
UCIe: Multi-Module Configurations

Example 4-module interface configuration

- 1, 2 and 4 modules allowed per interface
UCle: Transmitter

- Valid signal
 - Used to gate the clock distribution to all data Lanes to enable fast idle exit and entry
 - Valid framing
 - Tx for Valid signal the same as regular data Tx

- Track signal
 - Can be used for PHY to compensate for slow changing variables such as voltage or temperature
 - Unidirectional signal similar to a data bit
 - Transmitter sends a copy of Phase-1 of the clock signal when requested over the sideband by the Receiver.
UCIe: Transmitter Driver

- Control loop or training to adjust output impedance to compensate for PVT variations
- Must Hi-Z in low power state
UCle: Receiver

- Received clock is used to sample the incoming data
 - Receiver must match the delays between the clock path and the data/valid path to the sampler to minimize the impact of power supply noise induced jitter

- Data Receivers implemented as 2-way or 4-way interleaved
 - For 4-way interleaved implementation the Receiver needs to generate required phases internally from the two phase of the forwarded clock, which may require duty cycle correction capability on the Receiver
• Phase adjustment performed at Tx based on link training info from Rx
UCle: Standard Package Bump Map

<table>
<thead>
<tr>
<th>Column 0</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
<th>Column 9</th>
<th>Column 10</th>
<th>Column 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>vccio</td>
<td>vss</td>
<td>vccio</td>
<td>vss</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
</tr>
<tr>
<td>vccio</td>
<td>vss</td>
<td>txdata2</td>
<td>vss</td>
<td>txdata9</td>
<td>txdata11</td>
<td>vccio</td>
<td>vccio</td>
<td>vccio</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
</tr>
<tr>
<td>vss</td>
<td>txdata4</td>
<td>txdata3</td>
<td>txdata7</td>
<td>txdata13</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
</tr>
<tr>
<td>vccio</td>
<td>txdata0</td>
<td>txdata1</td>
<td>txdata15</td>
<td>txdata15</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
</tr>
<tr>
<td>vccio</td>
<td>txdata5</td>
<td>txdata8</td>
<td>txdata14</td>
<td>txdata15</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
<td>vss</td>
</tr>
</tbody>
</table>

Die Edge

Reference design 1:
- \(P = 110\, \text{um}, \)
- \(P_x = 110\, \text{um}, \)
- \(P_y = 190.5\, \text{um} \)

Reference design 2:
- \(P = 130\, \text{um}, \)
- \(P_x = 177\, \text{um}, \)
- \(P_y = 190.5\, \text{um} \)

\[3*P_y = 571.5\, \text{um} \]
UCle: PHY layer – Clock gating

Entry
- TxData must send the last UI for at least 1UI and up to 8UIs and then Hi-z
- Valid Lane must be held low
- Clock idle state level must alternate between differential high and differential low during consecutive clock gating events

Exit
- TxData must precondition the Data Lanes to a 0 or 1 (1UI to 8UI) before normal transmission
- Clock must drive a differential low (1UI to 8UI) before normal transmission
UCIe: PHY Layer – Electrical Idle and Sideband signaling

• Some training states need electrical idle when Transmitters and Receivers are waiting for generate and receive patterns
 • Tx and Rx are enabled
 • Data, Valid and Track held low
 • Clock is at high and low

• Sideband Signaling
 • Sideband data 800MT/s
 • Sideband clock 800MHz