UNIVERSITY OF CALIFORNIA, BERKELEY Department of Electrical Engineering and Computer Sciences EE251B Advanced Digital Circuits and Systems

Spring 2024, Prof. Borivoje Nikolic Homework 2 Issued: Friday, Febuary 16th, 2024 Due: Friday, March 8th 11:59pm

1 Transistor IV Models (50%)

(a) Use simulator of your choice (Spectre or HSpice) to simulate the VGS/IDS curve for the following device

Cell	nfet_01v8
Width	$.64 \mu m$
Length	$.15 \mu m$
Process Corner	$\mathbf{t}\mathbf{t}$

Ground the body of the device $(V_{BS} = 0)$. The device should be in saturation $(V_{DS} > V_{GS} - V_{th})$.

Provide your simulated V_{GS}/I_{DS} curve. What is the device's V_{th} ?

Hints:

- Set the drain of the device to $V_{DD}(1.8v)$ and the source to a 00hm resistor, with the other terminal of the resistor ground. You can measure the current through the resistor as your device's I_{DS} .
- Here is some starter code for a testbench that may be useful:

.lib '/home/ff/eecs251b/sky130/sky130_cds/sky130_release_0.0.1/models/sky130.lib.spice'
tt

```
.include '/home/ff/eecs251b/sky130/sky130_conv.spice'
```

xnfet drain gate source body nfet_01v8 w=0.64u l=0.15u

(b) For the I_{DSat} model used in class $(I_{DSat} = \frac{W}{L} \frac{\mu_{eff} E_C L}{2} \frac{(V_{GS} - V_{Th})^2}{V_{GS} - V_{Th} + E_C L})$, find the values of $E_C L$ and μ_{eff} that best fits your device's curve. Use the V_{th} value you found in part a).

Note that you may want to modify the $I_{Dsat}c$ equation to account for finite output resistance.

Hint: The lsqcurvefit function in MATLAB¹ may be useful.

- (c) Fit the simulated IV curve to the alpha-power-law model $I_D = K(V_{GS} VTh)^{\alpha}$. Report K, V_{Th} , and α ; Attach an image of the fitted curve superimposed on top of the simulated one.
 - i. is your fitted V_{th} different from the device model's? Why might this occur?
 - ii. We fit this curve for a device in saturation. when might this model be useful when the I_{DSat} one is not?

Hint: the lsqcurvefit function in MATLAB may also be useful here.

¹You can find an example for how to export Spectre data to MATLAB at https://courses.grainger.illinois. edu/ece483/sp2024/data/cadence/ECE483_MATLAB_export.pdf

2 Standard Cells (50%)

You have been tasked with providing useful delay modeling abstractions to a digital design team. Your responses should reference the following Sky130 LIB file: sky130_fd_sc_hd_tt_025C_1v80.lib. It can be found in /home/ff/eecs251b/sky130/sky130A/libs.ref/sky130_fd_sc_hd/lib/

(a) Using the lib file for sky130_fd_sc_hd__inv_1, plot (for both rising and falling outputs) the fanout (load) versus delay of using the tool of your choice. *Hint:* the device has two 2d "delay" arrays, one for rise time (cell_rise) and one for fall

Hint: the device has two 2d "delay" arrays, one for rise time (cell_rise) and one for fall time (cell_fall). One of the dimensions is the fanout (load) that device is driving.

(b) Simulate and plot the fanout (load) versus delay of sky130_fd_sc_hd__inv_1 using SPICE simulations. Does it differ from the .lib defined behavior?

Hint: what is the second column of the .delay array? What must you change in your simulation setup to ensure you are matching the environment the .lib parameters were extracted from?

- (c) Draw the schematic you could simulate to characterize the FO4 delay of an inverter inv_custom with size $\frac{W}{L}$.
- (d) Given the inverter sky130_fd_sc_hd__inv_1 as your reference device, what is the logical effort of sky130_fd_sc_hd__and2_0? You may reference the .lib values.