
UNIVERSITY OF CALIFORNIA, BERKELEY
Department of Electrical Engineering and Computer Sciences

EE251B Advanced Digital Circuits and Systems

Spring 2024, Prof. Borivoje Nikolic Issued: Thursday January 25, 2024
Homework 1 Due: Friday February 2, 2024

1 SystemVerilog Assertions (50%)

(a) Explain (in regular English) what condition each of the following assertions checks for:

i. assert property (!(mem_read && mem_write));

Check that the signals mem read and mem write are never asserted simultaneously.

ii. assert property (@(posedge clk) ready |-> ##1 valid);

Every time synchronous signal ready is asserted, check that valid is asserted the next
clock cycle.

iii. assert property (@(posedge clk) ready |=> valid);

Every time synchronous signal ready is asserted, check on the next cycle that valid is
asserted.

iv. assert property (@(posedge clk) ready |-> ##[1:2] valid);

Every time synchronous signal ready is asserted, check that valid is asserted on the next
cycle or the cycle after that.

v. assert property (@(posedge clk) disable iff (rst) not sel[0] ##1 sel[1]);

Check that synchronous signal sel[1] is never asserted on the next clock cycle after
sel[0] is asserted, unless rst was asserted.

(b) A delta-sigma modulator is a common digital signal processing block that can be used to
make a simple digital to analog converter using an FPGA output pin and an external RC
filter. It converts a sequence of digital codes into a fast-switching bitstream, which can then
be converted into a smooth analog signal by a lowpass filter. For example, here is a bitstream
produced from a digitally sampled sine wave played back through a delta-sigma modulator:

One common implementation of a delta-sigma modulator is called the error feedback struc-
ture. An error feedback modulator works by taking an unsigned input vector of width N

and adding it to an N-bit accumulator register on every clock cycle. The clock-synchronous
carry-out from this addition is the bitstream. The clock runs at a much faster rate than the
input update rate, allowing each digital input code to generate a long sequence of output bits
with the correct average value. Write a parameterized Verilog module that implements this
structure. Include a synchronous reset signal that sets the state of all registers to zero.

1

module efm #(parameter N = 8) (

input clk,

input reset,

input [N - 1 : 0] in,

output reg bitstream

);

reg [N - 1 : 0] acc;

always @ (posedge clk) begin

if(reset) begin

acc <= { N{ 1’b0 } };

bitstream <= 1’b0;

end else begin

{ bistream, acc } <= acc + input;

end

end

endmodule

Note: the parameter N doesn’t specifically need to be set to 8, it’s just good practice to set a
default value.

Write a SystemVerilog assertion or assertions that check for the correct behavior of the accu-
mulator and bitstream on each clock cycle. Make sure to include the reset signal.

assert property (@(posedge clk) disable iff (reset) {bistream, acc} ==

$past(input) + $past(acc));

assert property (@(posedge clk) reset |=> (acc == 0) && (bitstream == 0);

Write a SystemVerilog coverage statement that detects whether the bitstream changes value
during a verification simulation.

cover property(@(posedge clk) out !== $past(out));

2

2 System Interconnect (50%)

You have been tasked with building a system interconnect for a system-on-chip with 1024 processing
cores. You are considering several options for the on-chip system interconnect network:

i. 32-ary 2-mesh

ii. 32-ary 2-cube

iii. 16-ary 2-Cmesh4

iv. 32-ary 3-fly Clos

The application requires a packet size of 2048 bits.

(a) Calculate the required number of bits per unidirectional channel, for each network option,
such that each of the networks can support the ideal throughput of 128 bits/cycle/core under
uniform random traffic.

Hints: Start by calculating the total throughput of the network, then find the bisection
bandwidth and number of unidirectional bisection channels for each network. Express all
numerical answers in terms of integer powers of 2.

i. 32-ary 2-mesh

First, let’s calculate the total throughput (Θtotal) of the network:

Θtotal = Ncores ·Θcore = 210 cores× 27 bits/cycle/core = 217 bits/cycle (1)

Now we need to determine the bisection bandwidth (BB) and the number of unidirectional
bisection channels (BC). A 4-ary 2-mesh network is shown in Figure 1. Let’s solve for
its BB and BC and then generalize the results.

The bisection cut goes through 4 bidirectional channels. Thus, we get BC = 4 × 2 = 8
unidirectional channels. We can also see that under uniform random traffic this topology
should see a bisection bandwidth that is exactly half of the total throughput. Generalizing
our results gives us:

BC = 2
√

Ncores (2)

BB =
Θtotal

2
(3)

Now we can solve for the unidirectional bandwidth (bC) by dividing the bisection band-
width (BB) by the number of bisection channels (BC). Plugging in the numbers for a
32-ary 2-mesh gives us:

bC =
BB

BC
=

217 bits/cycle× 2−1

2×
√
210

= 210 bits/channel (4)

ii. 32-ary 2-cube

A similar analysis to the previous section is performed for this topology. A smaller
network, 4-ary 2-cube, is shown in Figure 2. The bisection cut goes through 8 bidirectional
channels. Thus we get BC = 8 × 2 = 16 unidirectional channels. We can also see that

3

Figure 1

under uniform random traffic this topology should see a bisection bandwidth that is
exactly half of the total throughput. Generalizing our results gives us:

BC = 4
√
Ncores (5)

BB =
Θtotal

2
(6)

Now we can solve for the unidirectional bandwidth (bC) by dividing the bisection band-
width (BB) by the number of bisection channels (BC). Plugging in the numbers for a
32-ary 2-mesh gives us:

bC =
BB

BC
=

217 bits/cycle× 2−1

4×
√
210

= 29 bits/channel (7)

Figure 2

iii. 16-ary 2-Cmesh4

A smaller network, 2-ary 2-Cmesh4, is shown in Figure 3. The bisection cut goes through
2 bidirectional channels. Thus we get BC = 2 × 2 = 4 unidirectional channels. We can

4

also see that under uniform random traffic this topology should see a bisection bandwidth
that is exactly half of the total throughput. Generalizing our results gives us:

BC = 2

√
Ncores

4
=

√
Ncores (8)

BB =
Θtotal

2
(9)

Now we can solve for the unidirectional bandwidth (bC) by dividing the bisection band-
width (BB) by the number of bisection channels (BC). Plugging in the numbers for a
16-ary 2-Cmesh4 gives us:

bC =
BB

BC
=

217 bits/cycle× 2−1

√
210

= 211 bits/channel (10)

Figure 3

iv. 32-ary 3-fly Clos

A smaller network, 2-ary 3-fly Clos, is shown in Figure 4. The bisection cut goes through
2 unidirectional channels in each direction. Thus we get BC = 2 × 2 = 4 unidirectional
channels in total across the bisection. We can also see that under uniform random
traffic this topology should see a bisection bandwidth that is exactly equal to the total
throughput. This is different than the previous topologies.

In Figure 4, the labeled “1/4” on all the channels represents the portion of the total
network throughput that any given channel is seeing under uniform random traffic. Each
core inputs 1/4 of the total throughput into the first stage (because we have 4 cores total
in this example). The first stage switches will split the 1/4 input throughput from one
node to two 1/8 throughput streams onto the outgoing channels. This will give us 1/4
of the total network throughput on both outgoing channels (1/8 from one input and 1/8
from the other). This is repeated until we output 1/4 of the total network throughput
to each of the core’s receivers. Now we can draw our bisection line, shown in red, and
calculate the ratio of total throughput in our bisection cut. It should be very clear that
the ratio is 1:1 because we have 4 channels crossing the bisection each carrying 1/4 of
the total data throughput.

Generalizing our results gives us:

BC = Ncores (11)

BB = Θtotal (12)

5

Now we can solve for the unidirectional bandwidth (bC) by dividing the bisection band-
width (BB) by the number of bisection channels (BC). Plugging in the numbers for a
32-ary 3-fly gives us:

bC =
BB

BC
=

217 bits/cycle

210
= 27 bits/channel (13)

Figure 4

(b) Show the worst-case zero-load latency breakdown for each interconnect network. Independent
of your calculations above, assume the following:

• The flit size is 64 bits and all channel widths are matched to that flit size.

• Assume that the latency of each channel (core-to-router or router-to-router) is 1 cycle.

• Assume the latency of each router to be 2 cycles.

We can calculate the zero-load latency as:

T0 = H · tr +
D

v
+

L

b
(14)

where H is the hop count (i.e. the number of routers on the path), tr is the router delay, D
is the total physical distance the signal must traverse, v is the speed of the signal, L is the
length of the signal in bits, and b is the channel bandwidth.

We have been given a channel latency of 1 cycle for core-to-router and router-to-router. We
also know that our serialization delay is the number of cycles required to serialize the packet
across a channel of width bC (this is the number we calculated in the previous question).
Thus, our latency equation can be rewritten in terms of “cycles”, where K is the number of
channels along the path and H is the number of routers along the path:

T0 = (H routers)·(2 cycles/router)+(K channels)·(1 cycle/channel)+(flits/packet)·(cycles/flit)
(15)

With a packet size of 2048 bits, this gives us 2048bits/packet
64 bits/flit = 32flits/packet. “cycles per flit”

is 1 since the channel width (bC) is equal to the flit size.

We want the worst-case zero-load latency and thus we have to find the diameter (Hmax) and
the associated number of channels K of the network to plug into our latency equation. Hmax

is the longest minimum-hop path between two cores.

6

i. 32-ary 2-mesh

For this topology, Hmax is found from one corner node to the opposite corner node. We
can now solve for the latency of the 32-ary 2-mesh:

Hmax = 2
√
N − 1 = 63 (16)

K = 1 + (Hmax − 1) + 1 = 64 (17)

T0 = Hmax × 2 +K × 1 + 32× 1 = 222 cycles (18)

ii. 32-ary 2-cube

Hmax for this topology is found by going from the middle node one one edge (e.g. west
edge) to the middle node on the adjacent edge (e.g. south edge). Thus,

Hmax =
√
N + 1 = 33 (19)

K = 1 + (Hmax − 1) + 1 = 34 (20)

T0 = Hmax × 2 +K × 1 + 32× 1 = 132 cycles (21)

iii. 16-ary 2-Cmesh4

Hmax for this topology is found by going from one of the corner node clusters to a node
in the opposite corner node cluster.

Hmax =
√
N − 1 = 31 (22)

K = 1 + (Hmax − 1) + 1 = 32 (23)

T0 = Hmax × 2 +K × 1 + 32× 1 = 126 cycles (24)

iv. 32-ary 3-fly Clos

Hmax for this topology is found by going from any node to any other node.

Hmax = 3 (25)

K = 1 + (Hmax − 1) + 1 = 4 (26)

T0 = Hmax × 2 +K × 1 + 32× 1 = 42 cycles (27)

7

	SystemVerilog Assertions (50%)
	System Interconnect (50%)

