UNIVERSITY OF CALIFORNIA, BERKELEY
Department of Electrical Engineering and Computer Sciences

EE251B Advanced Digital Circuits and Systems

Spring 2024, Prof. Borivoje Nikolic Issued: Thursday March 7, 2024
Homework 3 Solutions Due: Friday March 22, 2024

1 Time Borrowing (40 %)

The following circuit has been used to pipeline the calculation of combinational logic block A
followed by combinational logic block B, but the propagation delays of A and B are mismatched and
other considerations in the system make impossible to rebalance them to equalize their delays. This
problem considers a different approach to improving the overall timing. To make the calculations
less tedious, assume that all flip-flops and latches have zero setup and hold time, 100 ps clock to
output propagation delay, and there is no clock skew within the circuit.

S et PO W e B oo B o B
oL l l

(a) Suppose tpqa = 2ns and tp,qp = 1ns. What is the maximum clock frequency fqx that the
circuit can support without setup or hold time violations?

The minimum clock period is limited by the slower logic block, A:

Tok 2> telkeq,ff + tpd,a = 2.1ns (1)
Sfene < 476.2 MHz (2)

On the second cycle, the computation of B finishes early.

(b) If the middle flip-flop is swapped for a positive latch, what is the new maximum clock fre-
quency? Explain how the latch creates this change in performance.
It takes 3 clock cycles for the data to propagate from IN to OUT. Swapping for a positive latch
in the middle stage allows the computation of A to finish as late as 1.5 cycles and still be
captured properly, whereas before it had to finish at 1 cycle to be captured by the middle
flip-flop:

1.5 x Ty > Lelk-q,ff + tpd,A = 2.1ns (3)
Tax > 1.4ns (4)

But, we also need B to finish before the third clock edge in the time remaining after A
completes. Therefore, T, must also satisfy a second inequality in terms of both propagation
delays:

2 X Tok > telkeq, 8 + tpd,A + tpd,B = 3.118 (5)
Tclk 2 1.55ns (6)

We are limited by the more restrictive of the two inequalities (the second), yielding:
fclk S 645.2 MHz (7)

Note that for simplicity this assumes instantaneous t4.q1at in the latch (since none was given
— oops!). Slightly lower fox answers that assumed t4.qjat = telk-q & are also accepted.

Suppose that instead tpg Ao = 1ns and t,q = 2ns. What is the maximum clock frequency
in the original flip-flop based circuit? If the middle flip-flop is swapped for a negative latch,
what is the new maximum clock frequency? Explain how the latch creates this change in
performance.

The original flip-flop based circuit is unaffected by swapping the propagation delays, the
slower delay limits the maximum clock frequency either way. With the swap and a negative
latch inserted, we can write two new inequalities that are identical to part (b), which produces
the same result:

.fclk S 645.2 M Hz (8)

The clock distribution scheme in the chip creates a slight duty cycle distortion in CLK from
mismatched low-high and high-low propagation delays in the clock buffers. The net effect
is 100 ps extra time added to the on duration of the clock and 100 ps time substracted from
the off duration of the clock. For example, at f.x = 1 GHz the clock waveform would have
a 60% duty cycle at the location of this circuit on the chip. Recalculate the maximum clock
frequency for each case above (flip-flop based, positive latch inserted with t,q A > tpaB, and
negative latch inserted with t,q A < tpa,B). For each solution, explain why the duty cycle
distortion affected the result in the way that it did.

i. Flip-flop case: The duty cycle distortion does not affect the time between consecutive
pairs of rising edges, so the flip-flop circuit is unaffected and we have the same result as
part (a):

fclk S 476.2 MHz (9)

ii. Positive latch case: The increased on-duration of the clock adds to the amount of time
we can borrow by 100 ps, which improves the T, constraint from the first inequality:

1.5 X Ty + 100 ps > telk-q ff + tpd,A = 2.1ns (10)
Tax > 1.33ns (11)

The second inequality is unaffected, since it depends on the time between consecutive
pairs of rising edges:

2 X Ty > telk-q, it + tpd,A + tpa,B = 3.1ns (12)
Tux > 1.55ns (13)

Therefore the result with duty cycle distortion is still the same:

fene < 645.2 MHz (14)

iii. Negative latch case: In this case the duty cycle distortion reduces the amount of time
we can borrow by 100 ps, which worsens the first constraint:

1.5 x Ty — 100 ps > telk-q,ff + tpd,A = 2.1ns (15)
Tclk > 1.47ns (16)

However, like in the positive latch case, we are still limited by the computation of the
entire path:

2 X Toy > tclk—qﬂ + tpd,A + tpd,B =3.1ns (17)
Tclk > 1.55ns (18)

Therefore the result with duty cycle distortion is still the same:

fox < 645.2 MHz (19)

(e) In parts (b) and (c), suppose we made the opposite choices of latch polarity (swap for a
negative latch when ?,q A > tpqB and a positive latch when t,q A < tpd,B). What would be
the new maximum clock frequency in each case?

If we pick the opposite type of latch in (b) and (c¢), we can no longer borrow/pass slack in the
direction required to improve the timing, so the result is the same as the flip-flop case in (a):

fax < 476.2MHz (20)

2 Clock Gating (20 %)

(a) In the clock gating scheme below, define the required relationship of the listed flip-flop, latch,
buffer delay, and clock cycle Ty in order to avoid the glitching on the Gated_Clk signal.

Both of the following conditions must be met:

Tbuf < ﬂ:lk—q,lat (21)
Telk-qfr < 0.5 x Teix (22)

(b) Draw a timing diagram for a case that violates this relationship, causing glitching in Gated_C1k.

Any diagram showing either of the above being violated is accepted.

Tclk-q,ff Td-q,lat,
D Q : Tclk-g,lat
Latched_EN
D Q
>Clk
—Q Clk

Clk

Thuf |
BufClk \ > Clk
_./ Gated Clk

3 Chip Testing Data Interface (40 %)

This problem deals with the design of shift register based data interfaces for chip testing. Pay
attention because it might help your chip tapeout someday!

It is almost always necessary to read and write test and configuration data to a new prototype
chip, even an analog one. One simple way to do this is through a long shift register spanning all of
the digital and analog/mixed-signal macros on the chip. This is often referred to as a scan register
or scan chain. Each macro on the chip has a local scan register with timing verified during its
place-and-route step. Then, at the top-level place-and-route step the scan registers are all wired in
series and the scan clock is distributed to each macro. The scan interface doesn’t necessarily need
to be as fast as possible, but its design needs to be extremely robust against hold time violations
because they will brick your ability to test your new chip. You can always slow the clock or boost
the voltage if you have a setup issue, but as you discovered in the labs you can’t count on repairing
hold time violations this way.

(a) Let’s restrict our discussion to scan write registers only, leaving reading data back from the
chip as a future exercise for you to do on your own if needed. A simple way to implement a
configuration scan chain is to put a flip-flop based shift register in each macro and wire all
the inputs and outputs together at the top level, allowing the place-and-route tool to insert
buffers as needed, like so:

Macro #1 Config Bits Macro #2 Config Bits

1
1

twdatint = 25ps 1 twdatop = 120pS tw,dat,int = 25pS
1

1
SCAN_N——p oD —|r ({4 op o —E»—{Db Qqf—scAn_our

1
teteq = 10ps
+— tsetup = 20ps —

/\ thowt = -10ps /\

twclkint = 25ps

teueq = 10ps
+— tsetup = 20ps —

1
1
1
1
1
1
1
: /\ thowa = -10ps /\
1
1
1
1
L

twclkint = 25ps

i

twctktop = 20PS tw,ciktop = 20PS twctktop = 20PS

SCAN_CLK————¢

1 tpd,cikbur = 20ps tod,ctkbut = 20PS tpd,ctkbur = 20PpS

__

Top-Level Clock Distribution

Note that the tool inserted clock buffers but no data buffer because the clock rise/fall times
were constrained tighter than the data rise/fall times. Let’s suppose that there is a slight
inaccuracy in the PDK parasitic extraction deck for the particular tool flow you are using
(they are not always perfectly consistent, especially if we are dealing with a new process
or open-source tools) and the RC delay through the particular metal layer used for top-
level routing (the green-colored wire delays) is 10% faster than expected. How much setup
and hold margin did the circuit originally have, and how much does it have now? Assume
fek = 100MHz for this scan chain interface because that’s a typical maximum operating
frequency that single-ended FPGA and CMOS IO cells can support (and you want to push
this whole thing through digital tools with standard foundry-provided IP, avoiding the need
to design custom differential 1O cells and high-speed serial links).

Before wire delay error:

e Within the macro config bits there is 20 ps of hold time margin, since the data and
clock delays are the same so fmarg hold = telk-q — thold = 20 ps (note that the hold time

is negative, meaning that data can change 10 ps before clock edge arrives). The setup
time margin in the config bits is given by tmarg setup = Lotk — tsetup — telk-q = 10,000 ps —
20ps — 10ps = 9,970 ps = 9.970 ns.

e Between the macros we need to carefully account for the clock skew caused by different
clock path delays to the sending and receiving flip-flops. The clock distribution delay to
the sending flip-flop is ¢pq clkdist,tx = tw,clk,int = 25 ps and the delay to the receiving flip-
flop (buffers and green wire delays) is tpd cikdist,rx = 3 X (tpd,clikbuf + tw,clktop) = 120 ps,
creating a positive skew of tswew = tpd clkdist,rx — tpd,clkdist,tx = 99 PS.

The setup time margin is given by:

tmarg,setup - Tclk - tclk-q - tw,dat,top + tskew — tsetup

=10,000ps — 10 ps — 120 ps + 95 ps — 20 ps (23)
= 9.945ns

The hold time margin is given by:

tmarg,hold = tclk—q + tw,dat,top — tskew — thold
=10ps+ 120ps — 95ps + 10 ps (24)
=45ns

Note that the clock skew has opposite effects on the setup and hold margin — this will
be useful for part (c).

Summary table (worst-case limiting values in bold):

Intra-Macro | Inter-Macro (Top-Level)
Setup Slack 9.970ns 9.945 ns
Hold Slack 20 ps 45 ps

After wire delay error:

e There are no green wires within the macros affected by the RC delay error, so the
macro-level timing margins stay the same.

e The green delays being 10% faster than expected causes the macro-macro data delay to
decrease by 12 ps from 120 ps down to 108 ps, while the macro-macro clock distribution
delay only decreases by 6 ps from 120 ps down to 114 ps. This results in a net reduction
in the hold time margin of 6 ps and a net increase in the setup time margin by the same
amount.

Summary table (worst-case limiting values in bold):

Intra-Macro | Inter-Macro (Top-Level)
Setup Slack 9.97ns 9.951 ns
Hold Slack 20 ps 39ps

Although no timing violation occurs, we can observe that in principle, it is possible for a large
enough discrepancy in the wire delay to create a hold time violation (the problem intended
to illustrate this point, but the numbers were not selected properly for a hold time violation
to occur).

(b) One trick to avoiding this type of glitch is described in the paper “Measurement of high-
speed ADCs” by Lukas Kull and Danny Luu from IBM. Instead of allowing the top-level
place-and-route tool to fully handle the clock distribution, force it to route the clock and
data in opposite directions at the top level, clocking the last scan register first and the first
scan register last, as shown below:

Macro #1 Config Bits Macro #2 Config Bits
T 1 [1
1 ! 1 1
] twdatint = 25ps 1 tdatrop = 120pS | tw,dat,int = 25P8 1

SCAN.N——p Q| —ED—{p o[IS p Q| —@ES—|D Q[+ scAN_ouT

: toteq = 10pS : : totq = 10pS :
| *— tsetup = 20ps — 1 1 — tetup = 20pS — 1
: JAN thow = -10ps A : : A thot = -10ps A :

I | 1
: twcikint = 25PpS | \ tw,clkint = 25pS |
i S, —— ! ! —— (O '
| < 1 1 ¢ !

L

tw,clitop = 20PS tw,clictop = 20pS tw,cligtop = 20pS

1
1
1
: SCAN_CLK
1
1

tpd,clkbut = 20PS tpd,clbut = 20PS tpd,clkbut = 20PS

Top-Level Clock Distribution

What are the new setup and hold margins, and by how much do the setup and hold margins
change given the same error as before? Is there any percent error between expected and
actual delays through the top-level (green-colored) routing paths that can create a hold time
violation? If yes, what is it? If no, why not?

Before wire delay error:

The intra-macro timing margins are unaffected by the top-level clock distribution, but the
clock skew for the inter-macro timing path now becomes:

Lskew = —3 X (tpd,clkbuf + tw,clk,top) - tw,clkjnt
= —3 x (20ps +20ps) — 25 ps (25)
= —145ps

Therefore, the new inter-macro setup time margin is given by:
tmarg,setup = 71(:lk - t(zlk—q - tw,dat,top + tskew — 75setup
=10,000ps — 10ps — 120 ps — 145ps — 20 ps (26)
= 9.705ns
and the new inter-macro hold time margin is given by:
tmarg,hold = tclk—q + tw,dat,top — tskew — thold
= 10ps+ 120 ps + 145 ps + 10 ps (27)
= 285 ps

After wire delay error:

The intra-macro timing margins are again unaffected, but the clock skew for the inter-macro
timing path now becomes:

tékew = -3 x (tpd,clkbuf +0.9 x tw,clk,top) - tw,clk,int
= —3x (20ps + 0.9 x 20 ps) — 25 ps (28)
= —139ps

https://ieeexplore.ieee.org/document/7993683
https://ieeexplore.ieee.org/document/7993683

The new inter-macro setup time margin is given by:

t;narg,sotup = Tex — tclk—q —0.9 x tw,dat,top + tgkew - tsetup
=10,000ps — 10 ps — 108 ps — 139 ps — 20 ps (29)
= 9.723 ns

and the new inter-macro hold time margin is given by:

t;narg;hold - tclk-q + 0.9 x tw,dat,top - tékew — thold
= 10ps + 108 ps + 139 ps + 10 ps (30)
= 267 ps

The setup margin increases by 18 ps while the hold margin decreases by 18 ps. Even if the
green wire delays decreased by 100 %, we would still have positive hold time margin because
the clock buffer delay is large enough to guarantee that the transmitting flip-flop is clocked
later than the receiving flip-flop with enough margin to prevent a hold time violation. Note
that routing the clock and data in opposite directions does not guarantee that there won’t
be a hold time violation by construction, we still need to check the specific numbers of the
buffer delay and flip-flop timing parameters.

In terms of setup and hold time margins at the chip top level, what are the advantages and
disadvantages of routing the clock and signal in the same direction creating positive skew as
in (a) vs. routing the clock and signal in opposite directions creating negative skew as in (b)?
(Hint: We are looking for 4 answers to this part and we suggest writing them out in a 2 x 2
table.)

Positive Clock Skew Negative Clock Skew
Advantage | Increased setup margin, 1 feik max Increased hold time margin
Disadvantage Reduced hold time margin Reduced setup time margin, | feix max

Let’s suppose we used this technique, but there was a bug in our macro-level timing constraints
or extra wiring parasitics were added to some of the macro’s internal wiring during the top-
level assembly (for example, by placing a top-level power grid that the macro level place-and-
route didn’t know about over the wiring) and the fabricated chip ended up with the following
timing parameters within a macro’s scan register:

Where and how is timing violated? Is there any way to fix this post fabrication by adjusting
the clock frequency or chip supply voltage?

The data from the first flip-flop arrives tej-q +tw dat,int = 35 ps after the rising edge of the each
macro’s local SCAN_CLK input, but the clock arrives with 50 ps delay to the second flip-flop,
which has -10 ps hold time. This means the data at the input to the second flip-flop must be
stable until 40 ps after the input SCAN_CLK edge, but it already changes 35 ps after the edge,
producing a 5 ps hold time violation.

This hold time violation cannot be resolved post-fabrication, only setup time can reliably be
fixed by adjusting the clock frequency. Adjusting the chip supply voltage affects both the hold
time and the propagation delays and cannot generally be used to resolve hold time issues.

Macro #1 Config Bits Macro #2 Config Bits

1
1
] tw,datint = 25PpS 1 tw,datop = 120PS | tw,dat,int = 25P8 |
SCANN——p Q| —D—{p o[IS p Q| —@ES—|D Q[+ scAN_our
! toiq = 10pS ' ' toieq = 10pS '
I *— toewp = 20ps — 1 1 ~— tserp = 20ps —~ 1
: A thow = -10ps A : : A thota = -10pS A :
I | 1
: tw,cliint = S50ps | | twcliint = 50ps |
i S, - — ! ! ——— (I '
| < 1 1 ¢ !
L S S S 1 | I g S U S SN 1
o o o e e mmmmmmmmmm oo] -
1
tw,cliitop = 20PS tw,clictop = 20pS tw,cligtop = 20pS

1

1

1

: SCAN_CLK
| tpd,clkbut = 20PS tpd,clkbut = 20PS tpd,clkbut = 20PS :

Top-Level Clock Distribution

(e) Instead of using flip-flops, we can use a latch-based scan chain with two-phase non-overlapping
clocks to guarantee setup and hold violation free operation regardless of any unexpected
timing error in the scan chain, either at the top level or within a macro. Each data bit needs
to pass through two latches instead of one flip-flop. The schematic of this circuit substituted
into the design in part (a), where the place-and-route tool has free reign over the top-level
clock distribution, is shown below:

Macro #1 Config Bits Macro #2 Config Bits
e T . e .
1 ! 1 !
1 tudatint = 25PpS : twdattop = 120ps | tydat,int = 25PS :
SCANN——| D QHD o —@®—p QHD Q {0 QHD Q|—@EED—|DP QHD QfT—SCANOUT
1 1
1 1
1 toikq = 10pS , | tokeq = 10ps !
1 -— = — 1 -~— = —
i | en EN tsoup = 20pS EN N | i - Y EN Ssoup = 20pS EN N |
H thoia = -10ps ' H thoia = -10ps '
1 1
1 1
1 1
! e i ! Ao i
! tuciine = 25pS ! ! tucteint = 25PS !
| - ammm | e
S ; S ;
__ -
1 1
] twclktop = 20PS twciktop = 20PS twclktop = 20PS |
SCAN_CLK1 : {>—<——D—<——D—<—— !
! 1
1 toacuour = 20PS todcikbur = 20pS od,cikbur = 20PpS H
! 1
1 tw,clkrop = 20pS tw,clkrop = 20pS tw,clkctop = 20PS 1
SCAN_CLK2 : !
! 1
1 tog cikout = 20PS tod,ctiout = 20pS tod,ctkbut = 20pS 1
1

Top-Level Clock Distribution

The following timing diagram defines the clock parameters that you can control externally:

Suppose that the 4 clock timing parameters are set up precisely such that the macro-macro
timing arc considered in part (a) meets the hold time requirements with 5 ps margin. If the
same 10% error as in part (a) occurs in this circuit, which of the 4 clock parameters would
you need to change and by how much in order to fix the resulting timing violation?

In practice, we usually just set the 4 clock timing parameters to be equal, and if there’s trouble
we turn down the whole scan clock frequency until a scan loopback test works reliably. The
fact that any timing violation possible in the circuit can be resolved this way is left as an
exercise for the future in case you are curious.

If the green wires are 10% faster, then the clock arrives 6 ps sooner at the input latch of
macro #2 but the data arrives 12 ps sooner, producing a 1 ps hold time violation if there was
originally 5 ps hold time margin. Note that the transmitting latch is clocked from SCAN_CLK_2
while the receiving latch is clocked from SCAN_CLK_1, and the hold time of the receiving latch

SCAN_CLK1

SCAN_CLK2

tor|,1

: toffset,21

—

—
toffset,12

ton,z

SCAN_IN Do X D X D, X D, K

is specified with respect to the closing (falling) edge of SCAN_CLK_1. A hold time violation
occurs when the data propagated by the next SCAN_CLK_2 pulse arrives before the hold time
of the receiving latch expires. Therefore, we can fix the hold time violation by making togset, 12
more positive by > 1ps.

Unfortunately the numbers in this section were not selected properly, making the solution
confusing because the only way for this hold time violation to occur is if we used overlapping
clocks (fofiset,12 < 0), but non-overlapping clocks are typically used with two-phase latch-based
systems (as specified in the problem description) to avoid hold time violations. The violation
could also occur if the latches had large enough positive hold times, but negative hold times
are given. Turning the crank on the numbers without thinking through this carefully does
produce the right answer without necessarily uncovering this inconsistency, but lenient partial
credit is given since the formulation of the problem was incorrect.

In the original circuit, the hold time margin for the macro-macro timing path is given by:

tmarg,hold - (tw,clk,int + tclk—q + tw,dat,top) - (Stpd,clkbuf + 3tw,clk,t0p) — thold + toffset,lQ
5ps =25ps+ 10ps + 120 ps — 3 x 20 ps — 3 x 20 ps + 10 ps + tofset, 12 (31)
—40 ps = toﬁ'set,12

So in the circuit with 10 % faster green wires, we would need to set tofser,12 > —39 ps.

In terms of chip area, power, and maximum scan register update rate, what are the advantages
and disadvantages of flip-flop based scan chain and two-phase latch-based scan chain? In the
two-phase latch-based case, assume that the ton,1 = ton,2 = loffset, 12 = foffset,21 = tpulse and the
minimum pulse time corresponds to a half-period of the maximum fg, which is 100 MHz.
Which of the two options would you prefer to use on your future chip tapeouts and why?

The latch-based scan chain consumes more chip area (double the number of latches vs. flip-
flops, and flip-flops typically consume only about 50% more area), but operates at around half
the maximum clock rate given the pulse duration limitation (100 MHz for flip-flop vs. 50 MHz
for latch-based). The CV?2f dynamic power in the memory elements is similar between the
two cases, since C' almost doubles for typical latch vs. flip-flop designs while f halves. Note
that the latch-based scan chain requires twice the amount of clock distribution operating at
half the frequency, so dynamic power is similar but the area overhead is larger. No correct
answer for which is better, it is subjective. Be aware of the risks/tradeoffs in your future chip
designs!

10

	Time Borrowing (40%)
	Clock Gating (20%)
	Chip Testing Data Interface (40%)

