Power

Discussion 9

Announcements

- Final next Thursday (4/26)
 - Some people will be in Moffitt 106, will post final room assignments on Ed
- Homework 5 due 4/23
 - No extensions past 4/23
- Final presentations 9AM-12PM 5/2 (probably in BWRC)

Power vs. Energy

Power dissipation sources

$$P \sim \alpha \cdot (C_{L} + C_{CS}) \cdot V_{swing} \cdot V_{DD} \cdot f + (I_{DC} + I_{Leak}) \cdot V_{DD}$$
Dynamic power Static power

- α switching activity
- C_L load capacitance
- C_{CS} short-circuit "capacitance"
- V_{swing} voltage swing
- f frequency

- I_{DC} static current
- *I*_{leak} leakage current

Alpha-power delay scaling

- Since dynamic power is $\sim CV_{DD}^2$ f, we can scale V_{DD} down to reduce power
- This also increases our delay, which reduces our frequency

Dynamic voltage-frequency scaling

• Though dynamic power goes down, energy per cycle goes up because leakage power remains relatively constant and cycles are longer

.

(parer gating

. .

Hints for homework

- Maximum voltage droop is given by resistance of power gate times peak current (I_{pk}R_{pg})
- Energy pulled from the supply to switch the power gate is energy required to charge gate to VDD $(C_g V_{DD}^2)$
- When turning off power gate, block + power gate + rail discharges energy
- Power gating can become inefficient if the energy needed to switch the power gate outweighs the leakage energy avoided