
inst.eecs.berkeley.edu/~eecs251b

Borivoje Nikolić

EECS251B : Advanced Digital Circuits
and Systems

Lecture 13 – Delay Models

HBCUs Taking Bite of Apple’s Chip Engineer Effort. 

Feb 27, 2024, EETimes. “What we found is, it’s kind of a magical thing, that when you get 

VLSI (very large-scale integration) engineers from Apple together with students, pretty 

much every single time you do that, good things happen,” Zerbe said.

The alchemy he describes could happen during the times he and his other engineers leave 

their Cupertino, Calif., Austin, Texas, and other locations to travel to any of the dozen or so 

schools in the NSI. They include Carnegie Mellon, Stanford and UCLA Berkeley, the 

inaugural group to become involved in 2019 and 2020. In 2021, Apple added four 

historically black colleges and universities (HBCUs), including Alabama A&M, Howard, 

Morgan State and Prairie View A&M.
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Jared Zerbe, Apple’s director of engineering 
for hardware technology. (Source: Apple)



Announcements

• Lab 5 waiting on PDK correction

• Start project phase 1
• Spec doc due next week

• Homework 2 due next week
• Quiz 2 on March 12
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Standard Cells in ASAP7
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FinFET Standard Cells
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V. Vashishtha, ICCAD’17

ASAP7
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells
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ASAP7 Standard Cells

15EECS251B L13 GATE DELAYS



ASAP7 Standard Cells
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ASAP7 Latch
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Standard Cell Scaling Beyond N3

• Fin depopulation

18

• Nanosheet cell

• Stacked CMOS with buried power rails
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Delay Revisited
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How to Account for Input Slope?

• tpHL = 0.7 ReqCL
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• tpHL = 0.7 ReqCL

different Req!

tp = ln2 RC = 0.7 ReqCL

Tr,10-90 = 2.2 ReqCL

Tr,20-80 = 1.4 ReqCL
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Input Slope Dependence

• One way to analyze slope effect
• Plug non-linear I-V into diff. equation and solve…

• Simpler, approximate solution:
• Use VThZ model

out
out L NMOS PMOS

dVI C I I
dt

= = −
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Slope Analysis

• For falling edge at output:
• For reasonable inputs, can ignore IPMOS

• Either VDS is very small, or VGS is very small

• So, output current ramp starts when Vin=VThZ

• Could evaluate the integral

• Learn more by using an intuitive, graphical approach
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Slope Dependence

• Iout ramps linearly for 
VThZ<Vin<VDD

• Constant once Vin =VDD

• CL integrates Iout

• VThZ<Vin<VDD: Vout quadratic

• Vin = VDD: Vout linear
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Slope Dependence

• Compare to step input whose 
output crosses VDD/2 at same 
time

• Vout set by charge removed 
from CL

• Need to make
QR = QS 

• Step has to shift to when 
Iout=IDSAT/2
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From E. Alon
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Slope Dependence
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∆tslope

• To find Δtslope: 
• Find Vin = Vhalf when Iout = IDSAT/2
• And use input tr

• IDSAT ~ (VDD-VThZ):
Vhalf = (VDD+VThZ)/2

• So Δtslope = (VThZ/2)/kr

• kr = (0.8-0.2)VDD/(tr,20-80)  = 
0.6VDD/(2tp,in) = VDD/(3.3tp,in) 

• tp,in – input propagation delay

𝑡𝑡𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 +
𝑉𝑉𝑇𝑇𝑇𝑇𝑇/2
𝑘𝑘𝑟𝑟

= 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 +
𝑉𝑉𝑇𝑇𝑇𝑇𝑇
𝑉𝑉𝐷𝐷𝐷𝐷

(1.7𝑡𝑡𝑝𝑝,𝑖𝑖𝑖𝑖)
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Result Summary

• For reasonable input slopes:

• For tp,avg: VThZ is (VThZN + VThZP)/2
• VThZ/VDD typically ~1/3-1/2 at nominal supplies

• Propagation delay is a function of
• Drive strength (Req)

• Load (CL)

• Input rise/fall time (which is proportional to the propagation delay of the previous gate)

26

𝑡𝑡𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 +
𝑉𝑉𝑇𝑇𝑇𝑇𝑇/2
𝑘𝑘𝑟𝑟

= 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 +
𝑉𝑉𝑇𝑇𝑇𝑇𝑇
𝑉𝑉𝐷𝐷𝐷𝐷

(1.7𝑡𝑡𝑝𝑝,𝑖𝑖𝑖𝑖) = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 +
𝑉𝑉𝑇𝑇𝑇𝑇𝑇
𝑉𝑉𝐷𝐷𝐷𝐷

(0.8𝑡𝑡𝑟𝑟,20−80)
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Signal Arrival Times

• NAND gate:

Out

VDD

1
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Signal Arrival Times

• NAND gate:

Out

VDD

1
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Simultaneous Arrival Times

• NAND gate:

Out

VDD
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Impact of Arrival Times

Out

VDD

A

B

Delay

0 tB - tA

A arrives early B arrives early

Up to 25%
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The edge can also advance in the opposite transition 
Not in models; add derating during design
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Standard Cell Library
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Standard Cell Library
• Contains for each cell:

• Functional  information:  cell = a *b * c
• Timing information: function of

• input slew
• intrinsic delay
• Input/output capacitance
non-linear models used in tabular approach

• Physical footprint (area)
• Power characteristics
• Noise sensitivity

• Wire-load models - function of
• Block size
• Fan-out
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Example: NAND2
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Synopsys Delay Models

• Linear (CMOS2) delay model
• Similar to what we have studied so far 
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Example Cell Timing

• From Synopsys training materials
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Cell Characterization (Linear Model)
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(Synopsys) Nonlinear Delay Model (NLDM)

Delay is a function of:
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NAND2 (Sky130)
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Two-dimensional tables of 
pre-characterized delays/transition times
as a function of input slope and output 
capacitance 

Index1 – input transition
Index2 – load capacitance
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Nonlinear Delay Model (NLDM)

• Interpolates between characterization points
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Composite Current Source (CCS) Model

Synopsys
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Driver model
Composite current source
(time and voltage dependent)

Receiver model
A set of capacitance models

Wire model

Interpolate

Matches both delay and rise/fall times

And then there is Effective Current Source Model … (Cadence)
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Summary

• Revisited the delay in CMOS gates

• Analyzed standard cell characterization
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Next Lecture

• Revisit timing
• Latch-based timing
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