EECS251B : Advanced Digital Circuits and Systems

Lecture 15 - Latches

Borivoje Nikolić

The Startup Flipping Nvidia's Playbook on its Head

March 5, 2024, The Information. Taalas is developing the exact opposite of customizable chips: rigid chips which are each specialized for a different Al model, whether it's Meta Platforms' Llama models or Stable Diffusion. The Toronto-based startup, which was founded in August last year by former Nvidia and AMD veteran Liubisa Bajic, raised $\$ 12$ million in September and $\$ 38$ million in February from Quiet Capital and Pierre Lamond, an advisor at Eclipse Ventures who was previously a general partner at Khosla Ventures and Sequoia Capital.

Taalas cofounder and CEO Ljubisa Bajic. Courtesy of Taalas.

Announcements

- Lab 5 still waiting on PDK correction
- The newest fix brings it very close
- Start project phase 1
- Spec doc due tomorrow
- Homework 2 due tomorrow
- Quiz 2 on March 12
- Homework 3 posted this week

Latch Timing

Latch Sequencing

Latch-Based Timing

- Single-phase, two-latch

As long as transitions are within the assertion period of the latch, no impact of position of clock edges

Latch Design and Hold Times

- Slack passing - logical partition uses left over time (slack) from the previous partition
- Time borrowing - logical partition utilizes a portion of time allotted to the next partition
- Makes most impact in unbalanced pipelines

[^0]Slack Passing and Time Borrowing

Slack Passing and Time Borrowing

- Slack passed

Slack Passing and Time Borrowing

- Time borrowed

Slack-Passing and Cycle Borrowing

Design for Performance

Latch Design

Review: MUX

- 2-input MUX

Review: MUX

- 2-input MUX

$$
\begin{aligned}
& g_{\mathrm{A}}=1.7 \\
& \mathrm{~g}_{\mathrm{B}}=1.7 \\
& \mathrm{~g}_{\mathrm{Sel}}=3.4
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{C} 2 \mathrm{MOs}}=1.7
$$

$$
\mathrm{p}_{\mathrm{MUX}}=3.4
$$

$\mathrm{p}_{\text {MUX }}=3.4$

Review: Transmission Gates

$$
\begin{aligned}
& \text { Review: Transmission Gates } \\
& R_{\text {eq }}=R \| 2 R=2 / 3 R \\
& -\mathrm{Wr}
\end{aligned}
$$

Review: Transmission Gates

$$
= \begin{cases}\text { HL: } & -{ }^{R}-\mathbf{W}^{2}- \\ \text { LH: } & -\mathrm{Wh}^{2 R}\end{cases}
$$

$\mathrm{g}_{\mathrm{A}} \sim 1.7$
$g_{s}=1.7$
$p=1.7$ (but larger in practice because of layout)
$R_{e q}=R \| 2 R=2 / 3 R$
$-\mathrm{W}-$

Generating Complementary Clocks

- Inverter fork

$$
\begin{aligned}
& g_{\text {fork }} \sim 1 \\
& \mathrm{p}_{\text {fork }} \sim 3
\end{aligned}
$$

Courtesy of IEEE Press, New York. © 2000

Transmission-Gate Latch

(a) The transparent high latch (THL)

(b) The transparent low latch (TLL)

(c) Timing waveforms for the THL

Design for Performance

Delay, Setup, Hold

Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Setup-Hold Time Illustrations

Hold-1 case

Setup-Hold Time Illustrations

Hold-1 case

Setup-Hold Time Illustrations

Hold-1 case

Setup-Hold Time Illustrations

Hold-1 case

- ${ }^{\text {Clöck }}$

Setup-Hold Time Illustrations

More Precise Setup Time

Latch $\mathrm{t}_{\mathrm{D}-\mathrm{Q}}$ and $\mathrm{t}_{\mathrm{Clk-Q}}$

(ignore feedback inverters, assume $\mathrm{g}_{\text {fork }}=1$)

$$
t_{\text {Clk-Q }}=g_{1} f_{1}+p_{1}+g_{2} f_{2}+p_{2} ; \quad g_{1} f_{1}=g_{2} f_{2}=\sqrt{ }(G F)
$$

Assume $\mathrm{F}=1$, for simplicity, (although a latch should drive $\mathrm{F}>4$)

$$
\begin{aligned}
& \sqrt{G F}=1.3 \\
& t_{\mathrm{Clk-Q}}=(1.3+1.7)+(1.3+1)=5.3(=1.06 \text { FO} 4)
\end{aligned}
$$

(FO4 inverter delay = $1+4=5$ unit delays)

$$
\begin{array}{ll}
\mathrm{g}_{1}=1.7 & \mathrm{~g}_{2}=1 \\
\mathrm{p}_{1}=1.7 & \mathrm{p}_{2}=1
\end{array}
$$

To find the setup time, we will find the D-Clk offset that increases $\mathrm{t}_{\text {clk-Q }}$ by 5% Overall delay is $5.8 \mathrm{t}_{\mathrm{u}}, 5 \%$ increase is $0.28 \mathrm{t}_{\mathrm{u}}$

Note: Voltage level of $.12 \mathrm{~V}_{\mathrm{DD}}$ at X causes $\sim 12 \%$ delay increase

Assuming exponential response

$$
\mathrm{T}_{\text {setup }}=-\ln (0.12) \tau=2.1 \tau
$$

$$
\begin{aligned}
& \mathrm{T}_{\text {setup }}=2.1 \tau=3 \mathrm{t}_{\text {prop }}\left(\mathrm{t}_{\text {prop }}=0.7 \tau\right) \\
& \mathrm{T}_{\text {setup }}=3 \times 3 \mathrm{t}_{\mathrm{u}}=9 \mathrm{t}_{\mathrm{u}} \\
& \mathrm{~T}_{\text {setup }}=1.8 \mathrm{FO} 4
\end{aligned}
$$

Voltage level of $.12 V_{D D}$ at X causes $\sim 12 \%$ delay increase

$$
\mathrm{T}_{\text {setup }}+\mathrm{T}_{\mathrm{Clk-Q}}=2.8 \mathrm{FO} 4
$$

$\mathrm{T}_{\text {setup }}+\mathrm{T}_{\text {CIk-Q }}$ is typically 2.5-3.5 FO4 for fast latches (with low fanout)

Flip-Flops

Flip-Flops

- Performance metrics
- Delay metrics
- Insertion delay
- Inherent race immunity
- 'Softness' (Clock skew absorption)
- Inclusion of logic
- Small (+constant) clock load
- Power/Energy Metrics
- Power/energy
- Design robustness
- Noise immunity

Types of Flip-Flops

- Two ways to design a flip-flop
- Latch pair (large majority)
- Pulsed latch

Latch Pair

Pulse-Triggered Latch

Flip-Flop (Latch Pair) Clk-Q, setup, hold

Calculation is nearly identical to that of a latch (ignore feedback inverters).
$\mathrm{t}_{\mathrm{Clk-Q}}$ is the delay of the second latch, which is about 1FO4; note that $\mathrm{t}_{\mathrm{Ck}-\mathrm{Q}}$ should include the delay of the inverter fork

Setup time calculation goes the same way!

- Combinational logic delay is a function of output load and input slope
- Sequential timing (flip-flop):
- $t_{\text {clk-q }}$ is function of output load and clock rise time
- $t_{\text {Sur }} t_{H}$ are functions of D and $C l k$ rise/fall times
- Flip-flop has multiple stages, so the delay is less sensitive to input slope

Pulse-Triggered Latches

- First stage is a pulse generator
- generates a pulse (glitch) on a rising edge of the clock
- Second stage is a latch
- captures the pulse generated in the first stage
- Pulse generation results in a negative setup time
- Frequently exhibit a soft edge property
- Note: power is always consumed in the pulse generator
- Often shared by a group (register)

Pulsed Latch

Simple pulsed latch

Kozu, ISSCC'96

Intel/HP Itanium 2

Naffziger, ISSCC’02

Pulsed Latches

Hybrid Latch Flip-Flop, AMD K-6 Partovi, ISSCC'96

$1-0$ and 0-1 transitions at the input with Ops setup time

Hybrid Latch Flip-Flop

Skew absorption

Partovi et al, ISSCC'96

Pulsed Latches

7474, from mid-1960's

Pulsed Latches

Sense-amplifier-based flip-flop, Matsui 1992.
DEC Alpha 21264, StronaARM 110
First stage is a sense amplifier, precharged to high, when Clk = 0
After rising edge of the clock sense amplifier generates the pulse on
S or R
The pulse is captured in
S-R latch
Cross-coupled NAND has different propagation delays of rising and falling edges

Sense Amplifier-Based Flip-Flop

Sampling Window Comparison

Naffziger, JSSC 11/02

- Flip-flop-based (edge-triggered) timing dominates today
- Latch-based timing can increase performance, but needs extra care
- There is also asynchronous design
- Logical effort can be used to analyze latch timing

Next Lecture

- Variability

[^0]: Bernstein et al, Chapter 8, Chandrakasan, Chap 11 (by Partovi)

