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Lecture 15 – Latches

The Startup Flipping Nvidia’s Playbook on its Head

March 5, 2024, The Information. Taalas is developing the exact opposite of 
customizable chips: rigid chips which are each specialized for a different AI model, 
whether it's Meta Platforms' Llama models or Stable Diffusion. The Toronto-based 
startup, which was founded in August last year by former Nvidia and AMD veteran 
Ljubisa Bajic, raised $12 million in September and $38 million in February from 
Quiet Capital and Pierre Lamond, an advisor at Eclipse Ventures who was previously 
a general partner at Khosla Ventures and Sequoia Capital. 
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Taalas cofounder and CEO Ljubisa Bajic. Courtesy of Taalas.



Announcements

• Lab 5 still waiting on PDK correction
• The newest fix brings it very close

• Start project phase 1
• Spec doc due tomorrow

• Homework 2 due tomorrow
• Quiz 2 on March 12

• Homework 3 posted this week
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Latch Timing
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Latch Sequencing
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Latch-Based Timing

• Single-phase, two-latch

As long as transitions are within the assertion period of the latch, no impact of position of clock edges
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Latch Design and Hold Times
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Soft-Edge Properties of Latches
• Slack passing – logical partition uses left over time (slack) from the 

previous partition
• Time borrowing – logical partition utilizes a portion of time allotted to 

the next partition
• Makes most impact in unbalanced pipelines 

Bernstein et al, Chapter 8, Chandrakasan, Chap 11 (by Partovi)
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Slack Passing and Time Borrowing
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Slack Passing and Time Borrowing

• Slack passed
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Slack Passing and Time Borrowing
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• Time borrowed
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Slack-Passing and Cycle Borrowing

For N stage pipeline, overall logic delay should be < N Tcl
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Design for Performance

Latch Design
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Review: MUX

• 2-input MUX
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Review: MUX

• 2-input MUX
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3.6 3.6

3.6 3.6

1.5 1.5

1.5 1.5

gA = 1.7
gB = 1.7
gSel = 3.4

Changing Sel sizing compromises layout

pC2MOS = 1.7
pMUX = 3.4



Review: Transmission Gates
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Review: Transmission Gates
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Review: Transmission Gates
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gA ~ 1.7
gS = 1.7

p = 1.7 (but larger in practice because of layout)



Generating Complementary Clocks

• Inverter fork
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Latch vs. Flip-Flop

Courtesy of IEEE Press, New York.   2000
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Latches
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Usually without contention
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Latches

Courtesy of IEEE Press, New York.   2000 21EECS251B L15 LATCHES



Design for Performance

Delay, Setup, Hold
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Clk-Q Delay
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Clk-Q Delay
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Clk-Q Delay
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Clk-Q Delay
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Setup-Hold Time Illustrations

Hold-1 case
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Clk-Q Delay
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Clk-Q Delay
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Clk-Q Delay
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Clk-Q Delay
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More Precise Setup Time
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Latch tD-Q and tClk-Q

LOGICAL EFFORT 34
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tClk-Q = g1f1 + p1 + g2f2+p2; g1f1 = g2f2 = √(GF)

Assume F = 1, for simplicity, (although a latch should drive F>4)

g1 = 1.7 g2 = 1

p1 = 1.7 p2 = 1

𝐺𝐺𝐺𝐺 = 1.3

tClk-Q = (1.3 + 1.7) + (1.3 + 1) = 5.3 (=1.06 FO4)

(ignore feedback inverters, assume gfork=1)

(FO4 inverter delay = 1 + 4 = 5 unit delays)



tsetup
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Note: Voltage level of .12VDD at X causes ~12% delay increase

For 1.05 tclk-Q
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Overall delay is 5.8tu, 5% increase is 0.28tu
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tsetup
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TD-Clk=TSetup

Tsetup = -ln(0.12) τ = 2.1 τ

Assuming exponential response

Tsetup = 2.1 τ = 3tprop  (tprop = 0.7τ)

Tsetup = 3 x 3tu = 9tu
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Tsetup + TClk-Q = 2.8 FO4

Tsetup + TClk-Q is typically 2.5-3.5 FO4 for 
fast latches (with low fanout)
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Flip-Flops
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Flip-Flops

• Performance metrics

• Delay metrics
• Insertion delay

• Inherent race immunity

• ‘Softness’ (Clock skew absorption)

• Inclusion of logic

• Small (+constant) clock load

• Power/Energy Metrics
• Power/energy

• Design robustness
• Noise immunity
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Types of Flip-Flops

Latch Pair
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• Two ways to design a flip-flop
• Latch pair (large majority)

• Pulsed latch 
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Flip-Flop (Latch Pair) Clk-Q, setup, hold

LOGICAL EFFORT 40
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Difference to cause TCk-Q increase by 5% by 
affecting the storage node 

Calculation is nearly identical to that of a latch (ignore feedback inverters).  
tClk-Q is the delay of the second latch, which is about 1FO4; 
note that tCk-Q should include the delay of the inverter fork

Setup time calculation 
goes the same way!



Flip-Flop Library Timing Characterization

• Combinational logic delay is a function of output load and input slope

• Sequential timing (flip-flop):
• tclk-q is function of output load and clock rise time

• tSu, tH are functions of D and Clk rise/fall times

• Flip-flop has multiple stages, so the delay is less sensitive to input slope
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Pulse-Triggered Latches

• First stage is a pulse generator
• generates a pulse (glitch) on a rising edge of the clock

• Second stage is a latch
• captures the pulse generated in the first stage

• Pulse generation results in a negative setup time

• Frequently exhibit a soft edge property

• Note: power is always consumed in the pulse generator
• Often shared by a group (register)
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Pulsed Latch

Kozu, ISSCC’96

Simple pulsed latch
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Intel/HP Itanium 2

Naffziger, ISSCC’02
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Pulsed Latches

Hybrid Latch Flip-Flop, AMD K-6
Partovi, ISSCC’96
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HLFF Operation

1-0 and 0-1 transitions at the input with 0ps setup time
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Hybrid Latch Flip-Flop

Partovi et al, ISSCC’96

Skew absorption
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Pulsed Latches

7474, from mid-1960’s
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Pulsed Latches

First stage is a sense amplifier, precharged to 
high, when Clk = 0
After rising edge of the clock sense amplifier 
generates the pulse on 
S or R
The pulse is captured in 
S-R latch
Cross-coupled NAND has different propagation 
delays of rising and falling edges

Sense-amplifier-based flip-flop, Matsui 1992.
DEC Alpha 21264, StrongARM 110
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Sense Amplifier-Based Flip-Flop

Courtesy of IEEE Press, New York.   2000
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Sampling Window Comparison

Naffziger, JSSC 11/02
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Summary

• Flip-flop-based (edge-triggered) timing dominates today

• Latch-based timing can increase performance, but needs extra care

• There is also asynchronous design

• Logical effort can be used to analyze latch timing
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Next Lecture

• Variability
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