inst.eecs.berkeley.edu/~eecs251b

EECS251B : Advanced Digital Circuits and Systems

Lecture 15 – Latches

Borivoje Nikolić

The Startup Flipping Nvidia's Playbook on its Head

March 5, 2024, The Information. Taalas is developing the exact opposite of customizable chips: rigid chips which are each specialized for a different AI model, whether it's Meta Platforms' Llama models or Stable Diffusion. The Toronto-based startup, which was founded in August last year by former Nvidia and AMD veteran Ljubisa Bajic, raised \$12 million in September and \$38 million in February from Quiet Capital and Pierre Lamond, an advisor at Eclipse Ventures who was previously a general partner at Khosla Ventures and Sequoia Capital.

Taalas cofounder and CEO Ljubisa Bajic. Courtesy of Taalas.

Announcements

- Lab 5 still waiting on PDK correction
 - The newest fix brings it very close
- Start project phase 1
 - Spec doc due tomorrow
- Homework 2 due tomorrow
 - Quiz 2 on March 12
 - Homework 3 posted this week

Latch Timing

 \bigcap

O

Latch-Based Timing

• Single-phase, two-latch

As long as transitions are within the assertion period of the latch, no impact of position of clock edges

Latch Design and Hold Times

EECS251B L15 LATCHES

Soft-Edge Properties of Latches

- Slack passing logical partition uses left over time (slack) from the previous partition
- Time borrowing logical partition utilizes a portion of time allotted to the next partition
- Makes most impact in unbalanced pipelines

Bernstein et al, Chapter 8, Chandrakasan, Chap 11 (by Partovi)

Slack Passing and Time Borrowing

Slack Passing and Time Borrowing

Slack passed

EECS251B L15 LATCHES

Slack Passing and Time Borrowing

• Time borrowed

EECS251B L15 LATCHES

Slack-Passing and Cycle Borrowing

Design for Performance

Latch Design

EECS251B L15 LATCHES

LOGICAL EFFORT

Changing Sel sizing compromises layout

 $A \bullet \bigcirc \\ Sel \bullet \\ Sel \bullet \\ \\ Sel \bullet \\$

Generating Complementary Clocks

• Inverter fork

 $g_{fork} \sim 1$

p_{fork} ∼3

LOGICAL EFFORT

Courtesy of IEEE Press, New York. © 2000

Latches

Latches

(a) The transparent high latch (THL)

(b) The transparent low latch (TLL)

(c) Timing waveforms for the THL Courtesy of IEEE Press, New York. © 2000

EECS251B L15 LATCHES

Design for Performance

Delay, Setup, Hold

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Circuit before clock arrival (Setup-1 case)

Hold-1 case

Hold-1 case CNTG1 Inv2 Clk-Q Delay $Q_{\rm M}$ $S_{\rm M}$ D_1 D $\circ-$ Inv1 CP T_{Clk-Q} ---× T_{Hold-1} Time Clock Data ¦ t=0 T_{Hold-1} Time

Hold-1 case

EECS251B L15 LATCHES

$_{\rm D-Q}$ Latch t_{D-Q} and t_{Clk-Q}

(ignore feedback inverters, assume g_{fork}=1)

 $t_{Clk-Q} = g_1f_1 + p_1 + g_2f_2 + p_2;$ $g_1f_1 = g_2f_2 = \sqrt{(GF)}$

Assume F = 1, for simplicity, (although a latch should drive F>4)

 $\sqrt{GF} = 1.3$

LOGICAL EFFOR

 $t_{Clk-Q} = (1.3 + 1.7) + (1.3 + 1) = 5.3 (=1.06 \text{ FO4})$

(FO4 inverter delay = 1 + 4 = 5 unit delays)

To find the setup time, we will find the D-Clk offset that increases t_{clk-Q} by 5% Overall delay is 5.8t_u, 5% increase is 0.28t_u

Note: Voltage level of .12V_{DD} at X causes ~12% delay increase

setup

LOGICAL EFFORT

Assuming exponential response

 $T_{setup} = -In(0.12) \tau = 2.1 \tau$

 $T_{setup} = 2.1 \tau = 3t_{prop} (t_{prop} = 0.7\tau)$ $T_{setup} = 3 \times 3t_u = 9t_u$ $T_{setup} = 1.8 \text{ FO4}$

 T_{setup} + T_{Clk-Q} = 2.8 FO4

 T_{setup} + T_{Clk-Q} is typically 2.5-3.5 FO4 for fast latches (with low fanout)

Flip-Flops

Flip-Flops

- Performance metrics
- Delay metrics
 - Insertion delay
 - Inherent race immunity
 - 'Softness' (Clock skew absorption)
 - Inclusion of logic
 - Small (+constant) clock load
- Power/Energy Metrics
 - Power/energy
- Design robustness
 - Noise immunity

Types of Flip-Flops

- Two ways to design a flip-flop
 - Latch pair (large majority)
 - Pulsed latch

Flip-Flop (Latch Pair) Clk-Q, setup, hold

Calculation is nearly identical to that of a latch (ignore feedback inverters). t_{Clk-Q} is the delay of the second latch, which is about 1FO4; note that t_{Ck-Q} should include the delay of the inverter fork

LOGICAL EFFORT

Setup time calculation goes the same way!

Flip-Flop Library Timing Characterization

- Combinational logic delay is a function of output load and input slope
- Sequential timing (flip-flop):
 - $\ensuremath{^\bullet}\xspace t_{clk-q}$ is function of output load and clock rise time
 - \bullet $t_{S\upsilon}\text{,}~t_{H}$ are functions of D and Clk rise/fall times
 - Flip-flop has multiple stages, so the delay is less sensitive to input slope

Pulse-Triggered Latches

- First stage is a pulse generator
 - generates a pulse (glitch) on a rising edge of the clock
- Second stage is a latch
 - captures the pulse generated in the first stage
- Pulse generation results in a negative setup time
- Frequently exhibit a soft edge property

- Note: power is always consumed in the pulse generator
 - Often shared by a group (register)

Pulsed Latch

Kozu, ISSCC'96

Dout

Intel/HP Itanium 2

EECS251B L15 LATCHES

Clk ~'

 \overline{Q}

45

Hybrid Latch Flip-Flop, AMD K-6 Partovi, ISSCC'96

HLFF Operation

1-0 and 0-1 transitions at the input with 0ps setup time

Hybrid Latch Flip-Flop

Skew absorption

EECS251B L15 LATCHES

Pulsed Latches

7474, from mid-1960's

Pulsed Latches

Sense-amplifier-based flip-flop, Matsui 1992. DEC Alpha 21264, StrongARM 110

First stage is a sense amplifier, precharged to high, when Clk = 0After rising edge of the clock sense amplifier generates the pulse on S or RThe pulse is captured in S-R latch Cross-coupled NAND has different propagation delays of rising and falling edges

Sense Amplifier-Based Flip-Flop

Sampling Window Comparison

Naffziger, JSSC 11/02

EECS251B L15 LATCHES

Summary

- Flip-flop-based (edge-triggered) timing dominates today
- Latch-based timing can increase performance, but needs extra care
- There is also asynchronous design
- Logical effort can be used to analyze latch timing

