inst.eecs.berkeley.edu/~eecs251b

EECS251B : Advanced Digital Circuits and Systems

Lecture 26 – Finale

Borivoje Nikolić

April 16 (Reuters) - Chip startup Rivos said on Tuesday it raised \$250 million in a funding round that will enable it to manufacture its first server chip geared for artificial intelligence.

Rivos is tight-lipped about the specifics of the product, but has disclosed that its plans include designing chips based on the RISC-V architecture, which is an open source alternative to the architectures made by Arm, Intel, and Advanced Micro Devices. Instruction set architectures such as RISC-V are the building blocks of semiconductor designs, and using the open source alternative means Rivos does not have to pay a license fee to Arm.

rivosinc.com

Announcements

- Homework 5 due today
- Project
 - Pay attention to integration with other teams!
 - Final presentations: May 2, 9am-12pm, BWRC
- Final exam: Thursday, April 26, in class
 - Two classrooms!

Delay-Locked Loops

3

Clock Generation

Delay-Locked Loop (Delay Line Based)

Phase-Locked Loop (VCO/DCO-Based)

EECS251B L26 FINALE

ŀ

Delay-Locked Loop

- First order loop: inherently stable
- No filtering of input jitter
- Constant frequency (no synthesis)
- No phase error accumulation

Delay-Locked Loop

K_F

Open loop transfer function

$$\frac{D_{O}(s)}{D_{I}(s) - D_{O}(s)} = K_{PD} \frac{1}{sC} I_{CP} K_{DL} F_{REF} = \frac{1}{s} K_{PD} K_{F} K_{DL}$$

Closed loop transfer function

$$H(s) = \frac{D_O(s)}{D_I(s)} = \frac{K_{PD}K_FK_{DL}}{s + K_{PD}K_FK_{DL}}$$

Delay-Locked Loop

- $\omega_N > an order of magnitude below F_{REF}$
- Use of DLLs requires low-jitter input
- VCDL must span adequate delay range + reset to min delay
- Noise sources:
 - Delay line (Supply sensitivity)
 - Clock buffers that follow
 - Device noise (small)

Clock Distribution

Mesh

Grid

H-Tree

X-Tree

Tapered H-Tree

Example (Older) Clock System

• IBM Power 4

Restle, ISSCC'02

EECS251B L26 FINALE

Clock Grid

One PLL with multiple DLLs

- Single PLL, and two cores vary frequency through digital frequency dividers (DFDs) and DLLs
 - SLCB: Second-Level Clock Buffer
 - CVD: Clock Vernier Device fine (static) delay tuning

Deskewing and Synchronization

Clock Domain Synchronization

Туре	Frequency	Phase
Synchronous	Same	Same
Mesochronous	Same	Constant offset
Plesiochronous	Small difference	Slowly varying
Asynchronous	Different	Arbitrary

Deskew System (Mesochronous)

Geannopoulos, ISSCC'98

EECS251B L26 FINALE

Deskew System

• Essentially a DLL to align regional clock with ref. clock

EECS251B L26 FINALE

Deskew Buffer

Clock Subsystem

- Intel Xeon Bowhill, ISSCC'15
 - Independent clocks for 4-18 cores
- Self-biased ring-osc (SB) and LC PLLs

Clock Domain Crossings

• Bowhill, ISSCC'15

• Cascaded flip-flops reduce the probability of metastability

Clock Crossing FIFOs

• FIFO for clock crossings

http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf

Supply Generation

Supply Generation

• Linear

FFCS25

- Series or shunt
- Linear regulation
- Quiet
- Inefficient (unless Vin-Vout is small)

- Switching (Capacitive)
 - Limited efficiency
 - Poor regulation
 - Voltage ripples
- Switching (Magnetic)
 - Efficient
 - Require external components
 - Noisy

Linear vs. Switching Regulators

Efficiency η < Vout/Vin

Switching

V_{out}

+

EECS251B L26 FINALE

Linear Voltage Regulator

Negative feedback sets low supply resistance Voltage regulated to desired level

E.g. IBM Power7 has 48 linear regulators

EECS251B L26 FINALE

Switching Supply

• Buck Converter

High switching frequency, interleaving reduce ripple

Pulse-Width Modulation (PWM) regulates V_{out}

Inside Haswell

Integrated VR Technology

Power cell

- 2.8 mm²

- 'Common Cell' Architecture 20 cells
- Architecture supports flat efficiency curve
- Fine grain power management

....................

- · Allows for multiple voltage rails
- Telemetry and Margining features
- Active Voltage Positioning for current sharing and balance.
- Control features, including: JTAG, FPGA, Test/BIST

oze:

>éhme

Inside Haswell

Review: Power Cell Architecture

- Each Power cell = Mini VR
 - Up to 25A rating* tested
 - Programmable switching frequency 30MHz to 140MHz
 - Ring coupled inductor topology
- 16 phases per power cell, 320 phases per chip
 - High phase count reduces noise, ripple
 - High granularity
 - Cell shedding
 - Bridge shedding
- BIST
 - Self-load and characterization system.
 - * Thermally constrained

• Inductors moved to a small PCB

HSW U/Y 40x24x1.5mm

BDW-Y 30x16.5x1.04mm

Caps

Caps

Switched-Capacitor Supply

Interleaving reduces ripple, but lowers efficiency

EECS251B L26 FINALE

What happens with supply when load changes?

http://www.research.ibm.com/people/r/restle/Animations/DAC01top.html

EECS251B L26 F Mailing Restle, IBM

Power Delivery

• Typical model

 \bigcap

Supply Resonances

- First droop
 - Package L + on-die C
- Second droop
 - Motherboard + package decoupling
- Third droop

EECS251B

• Board capacitors

Clock and Supply

- Large digital systems can have large voltage transients
 - Can we filter impact of voltage on a clock generator?

Kurd, JSSC'09

Clock and Supply

• IBM Power7, with one PLL per core

Lefurgy, MICRO'11

EECS251B L26 FINALE

Abstracted delay line

EECS251B L26 FINALE

Period modulation from successive modulated delays

Droop Detection

• Hashimoto, JSSC 4/18

Time

Wrap-Up

Many Topics Covered

- RISC-V SoC organization (Chipyard); interconnects; accelerators
- Productivity languages and flows for design and verification (SystemVerilog, Chisel, HLS)
- Technology features, variability
- Standard cells
- Design for performance: Timing, latch-based design
- Memory, SRAM
- Low-power design: Lowering supplies, DVFS, leakage control
- Clock generation
- Supply generation

This Class

- Put design choices in technology perspective
- The design constraints have changed and will be changing
 - Cost, energy, (power, leakage, ...), performance
- Focused on SoC design, variability, power-performance tradeoffs, power management
- \bullet Did not cover arithmetic, domino, I/O, supply generation, packaging, ...
 - Packaging will need to be added back in the course

Other Classes

- Integrated Circuits:
 - EE240B: Advanced Analog Circuits
 - EE240C: Data Conversion
 - EE242: Advanced RF
 - EE290C: Advanced Topics in Circuit Design
 - Tapeout Class
- Computer Architecture
 - CS252: Advanced Computer Architecture
 - EECS290: ML Hardware
- Systems
 - CS262: Advanced Computer Systems

Tapeout Class

2021: 18 students

TSMC 28nm 1mm x 1mm

2022: 41 students

2x Intel 16 2mm x 2mm

OSCIBear: 32b RISC-V + BLE + AES + Power

SCuM-V'22: 64b RISC-V core, BLE + 802.15.4, LDOs, references

2023: 54 students

3x Intel 16 2mm x 2mm

2024: 69 students

69 students SCuM-V'23: 32b RISC-V core, BLE + 802.15.4, LDOs, references, radar

1.2

1.1

0.9

0.8

0.7

0.6

0.55

€ _{0.85}.

BearlyML Core Booting Status Shmoo Plot

Frequency (MHz)

BearlyML'22: 5 RISC-V cores: 50 100 150 4 Rocket with custom sparse matrix acc, Saturn-V, NoC, PLL, L2

BeariyML'23: 4 RISC-V Rockets with custom sparse matrix acc, near-memory acc, NoC, L2\$

50 100 150 200 250 300 350 400 450 500

Shmoo plot, running MNIST

RoboChip'23: 2 RISC-V Rockets with Kalman, LQR acc, BooM + MTE, NoC, L2\$

This Field

- Moore's law will end sometime during your (my?) career
 - 3nm in 2022 scales to 0.1nm by 2050 with 2-yr cycles (or to 0.5nm with 5-yr cycles)
- Physics will stop CMOS somewhere ~2nm (?)
 - Will we see a different (CMOS) device in the meantime
- Economics will likely stop it somewhere while still in single digits
 - And the nodes will be stretched out
- We will see multi-chip/packaging solutions
- Don't worry: Creativity is unlimited!
 - What can you build with 10B/100B/1 trillion transistors?
 - Even filling 10B-transistor chips with SRAM is not trivial!

Current Perspective for <5nm

• Samavedam, et al, IEDM'20

The Era of Chiplets

Intel Ponte Vecchio

Apple M1 Ultra

The Era of Distributed, Domain-Specific Compute

EECS251B L26 FINALE

DGX H100 256 SuperPOD

Technology Strategy / Roadmap

This Field

- Focus on principles
- Watch out for opportunities
- Stay current!
 - Read
 - Keep learning new tools
 - Do