
inst.eecs.berkeley.edu/~eecs251b

Borivoje Nikolić

EECS251B : Advanced Digital Circuits
and Systems

Lecture 3 – Design Productivity

EECS251B L02 CHIPYARD 1Nikolić, Spring 2024

• Design Productivity

• High-Level Synthesis

• Chisel

• SystemVerilog (next lecture)

Resources
• Chisel

• Chisel bootcamp: https://github.com/freechipsproject/chisel-bootcamp
• Abbreviated version: https://mybinder.org/v2/gh/ucb-ee290c/tapeout-chisel-

bootcamp/HEAD

• Professor Scott Beamer’s lectures on Agile Hardware Design in Jupyter notebooks
(https://github.com/agile-hw/lectures)

• Resources: https://www.chisel-lang.org/chisel3/docs/resources/resources.html
• Scala course: https://www.coursera.org/specializations/scala

• High-Level Synthesis
• Professor Zhiru Zhang’s course on High-Level Synthesis

(https://www.csl.cornell.edu/courses/ece5775/schedule.html)
• High-Level Synthesis Blue Book
• Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer, Parallel Programming for

FPGAs, arXiv, 2018.

3

https://github.com/freechipsproject/chisel-bootcamp
https://mybinder.org/v2/gh/ucb-ee290c/tapeout-chisel-bootcamp/HEAD
https://mybinder.org/v2/gh/ucb-ee290c/tapeout-chisel-bootcamp/HEAD
https://github.com/agile-hw/lectures
https://www.chisel-lang.org/chisel3/docs/resources/resources.html
https://www.coursera.org/specializations/scala
https://www.csl.cornell.edu/courses/ece5775/schedule.html
https://arxiv.org/abs/1805.03648
https://arxiv.org/abs/1805.03648

Golden Age of Computer Architecture

4

Today’s Systems-on-Chip are complex

5

“Most C omplex S oC Ever Made
~8,000 Engineering Years”

* NVIDIA Xavier Announcement, C ES ’2018

Multimedia Engines
Encode, Decode

Vision Accelerators
S tereo Display
Optical Flow
Image Processing

Volta GPU

IS P
Full-range HDR
Lens C orrection

C armel ARM64 C PU

Deep Learning Accelerators

Hardware design is relatively slow

6

• The number of unique features in hardware is limited by design effort

R&D Architect Implement

R&D Architect Implement Productize

Productize

Feature 1

Feature 2

201820172016201520142013

…while algorithms are changing quickly

7

• Design Productivity

• High-Level Synthesis

• Chisel

• SystemVerilog (next lecture)

Design Abstraction Evolution

9

Source: Kurt Keutzer

High-Level Synthesis (HLS)
• Automated design process that

transforms a high-level functional
specification to optimized register-
transfer level (RTL) descriptions for
efficient hardware implementation

• Why HLS?
• Productivity

• Lower design complexity and faster
simulation speed

• Portability
• Single source -> multiple implementations

• Permutability
• Rapid design space exploration ->

higher quality of result (QoR)

10

[Source: NVIDIA, 2019]

High-Level Synthesis (HLS)

11

• Automated design process that
transforms a high-level functional
specification to optimized register-
transfer level (RTL) descriptions for
efficient hardware implementation

• Why HLS?
• Productivity

• Lower design complexity and faster
simulation speed

• Portability
• Single source -> multiple implementations

• Permutability
• Rapid design space exploration ->

higher quality of result (QoR)

Case study: FIR Filter
//original FIR

#define SIZE 128

#define N 10

void fir(int input[SIZE], int out[SIZE]) {

// FIR coefficients

int coeff[N] = {13,-2,9,…,74};

// exact translation from the FIR equation

for (int n = 0; n < SIZE; n++) {

int acc = 0;

for (int i = 0; i < N; i++) {

if (n – i >=0)

acc += coeff[i] * input[n-i];

}

output[n] = acc;

}

}

12

[Example adapted from Prof. Zhiru Zhang’s HLS tutorial.]

Case study: FIR Filter: Default Microarchitecture

13

void fir(int input[SIZE], int out[SIZE]) {

// FIR coefficients

int coeff[N] = {13,-2,9,…,74};

// shift registers

int shift_reg[N] = {0};

for (int n = 0; n < SIZE; n++) {

int acc = 0;

for (int j = N – 1; j>0; j--) {

shift_reg[j] = shift_reg[j-1];

}

shift_reg[0] = input[n];

for (int i = 0; i < N; i++) {

acc += coeff[i] * shift_reg[i];

}

output[n] = acc;

}

}
[Example adapted from Prof. Zhiru Zhang’s HLS tutorial.]

Case study: FIR Filter: Unrolling

14

void fir(int input[SIZE], int out[SIZE]) {

// FIR coefficients

int coeff[N] = {13,-2,9,…,74};

// shift registers

int shift_reg[N] = {0};

for (int n = 0; n < SIZE; n++) {

int acc = 0;

for (int j = N – 1; j>0; j--) {

#pragma HLS unroll

shift_reg[j] = shift_reg[j-1];

}

shift_reg[0] = input[n];

for (int i = 0; i < N; i++) {

#pragma HLS unroll

acc += coeff[i] * shift_reg[i];

}

output[n] = acc;

}

}

Case study: FIR Filter: Partitioning

15

void fir(int input[SIZE], int out[SIZE])
{
 // FIR coefficients
 int coeff[N] = {13,-2,9,…,74};
 // shift registers
 int shift_reg[N] = {0};
 #pragma HLS ARRAY_PARTITION
variable=shift_reg complete dim=0
 for (int n = 0; n < SIZE; n++) {
 for (int j = N – 1; j>0; j--) {
 …
 }
 …
 for (int i = 0; i < N; i++) {
 …
 }
 }
}

Case study: FIR Filter: Pipelining

16

void fir(int input[SIZE], int

out[SIZE]) {

 // FIR coefficients

 int coeff[N] = {13,-2,9,…,74};

 // shift registers

 int shift_reg[N] = {0};

 for (int n = 0; n < SIZE; n++) {

 #pragma HLS pipeline II=1

 int acc = 0;

 …

 output[n] = acc;

 }

}

High-Level Synthesis

• Exponential growth in HW design complexity calls for higher level of
design abstraction.

• To raise hardware design level of abstraction
• Use high-level languages,

• e.g., C++ instead of Verilog

• Use automation,

• e.g., HLS tools to generate Verilog

• Use libraries/generators,

• e.g., MatchLib from NVIDIA

17

• Design Productivity

• High-Level Synthesis

• Chisel

• SystemVerilog (next lecture)

Adapted from slides by Hasan Genc and Brendan Sweeney

Verilog/VHDL

• Extremely popular, but aging

• If you get a job writing RTL, it will probably be in one of these

• Cons
• Poor parameterizability

• Some companies write scripts to generate Verilog

• Weak type-safety (esp. Verilog)
• Weak notion of signed vs unsigned

• Easy to accidentally truncate bits

• Easy to generate non-synthesizable hardware by mistake
• Originally a simulation language

• Hardware primitives must be inferred

• Market for Verilog linters!

Dan Luu

Old school hardware engineers will tell you that
it's fine. It's fine that the language is so
counter-intuitive that almost all people who
initially approach Verilog write code that's not
just wrong but nonsensical.

SystemVerilog

• Superset of Verilog

• New features
• Especially for verification

• More expressive

• Clearer datatypes, better abstractions, etc.

• More about SystemVerilog from Vighnesh Iyer (next lecture)

• Cons:
• Also possible to generate non-synthesizable hardware by mistake

• Some advanced features are not supported by all vendors

Chisel

• Embeds an HDL in Scala
• Verilog/VHDL/SystemVerilog are standalone languages

• Chisel describes the hardware…
• …and Scala parameterizes it

• Pros:
• No confusing separation between synthesizable and simulation-only hardware
• Easy to define new types and typeclasses

• You don’t have to always think in terms of “bits”
• Operator overloading, implicit datatype conversion, etc.

• Powerful metaprogramming and parameterizability
• Don’t just write hardware!
• Write programs that generate hardware!
• Just look at Diplomacy as a comprehensive example

But surely there must be a catch?

• Chisel cons:
• Awkward support for latches and asynchronous hardware

• Verification flow is not (yet) as advanced as with SystemVerilog

• Some examples of Chisel working with UVM and SVA exist/being worked on
(ChiselVerify, Dynamic Verification Library (verif), CHA)

• Some people are scared of Scala

• Some parts of the Scala ecosystem are painful to use

• SBT, JVM, …

• We will also talk about issues specific to the Chisel compiler later

What about other options?

• There are lots of HDLs

• Embedded in lots of different languages
• Including Python, Haskell

• Examples
• BlueSpec

• SpinalHDL

• Magma

• PyRTL

• Clash

• MyHDL

• Substrate

Let’s Make an FIR Filter

(example from the Chisel website)

Prettier Verilog

This is how beginner typically use Chisel:

Where Chisel Shines

• Write generators, not circuits

• Chisel makes functional programming easy

• Maps, reduces, tabulates…

• But it doesn’t force functional programming on you

• For-loops and stateful statements are OK too!

Where Chisel Especially Shines

• Types!
• Powerful typeclasses

• Great type-checking

• Fewer bugs!

Generators Make Hardware Reusable

Not unique to Chisel, but Chisel makes it easier

ChiselTest – A test harness for CHISEL RTL

• Based on ScalaTest
• Set input values with poke

• Read output values with peek

• Compare the values with expect

Chisel high-points

• List manipulations are easy
• Map, reduce, scan, etc.

• Parameterizing across types is easy
• With an excellent type system to make sure you don’t make mistakes

• Reusable hardware
• Very convenient standard library

• Queues, handshake-based interfaces, bit-manipulation functions, counters, etc.

• RocketChip components are (kind-of) plug-and-play
• TLBs, caches, entire CPUs, etc.

• Excellent IDE support
• Write hardware in IntelliJ

Chisel Compiler

• Chisel has an intermediate representation (IR)
called FIRRTL (Flexible Intermediate
Representation for RTL)

• Chisel: Clang

• FIRRTL: LLVM

• Verilog: Machine code

• FIRRTL supports transformations on FIRRTL data
structures (abstract syntax tree – AST)

• Early area estimations

• Add hardware counters and instrumentation

• Optimize RTL for ASIC vs FPGA

Chisel

FIRRTL

Verilog

Chisel Compiler

• Chisel has an intermediate representation
(IR) called FIRRTL (Flexible Intermediate
Representation for RTL)

• Chisel: Clang
• FIRRTL: LLVM
• Verilog: Machine code

• FIRRTL supports transformations on FIRRTL
data structures (abstract syntax tree –
AST)

• Early area estimations
• Add hardware counters and instrumentation
• Optimize RTL for ASIC vs FPGA

• Largely replaced by CIRCT backend

Chisel

FIRRTL

Verilog

Magma

VHDL

CHISEL -> FIRRTL -> Verilog
• FIR Filter Example

CHISEL

FIRRTL Verilog

Advantages of the Chisel Compiler

• Optimization passes can be shared across hardware designs
• A similar concept exists for software compilers

• Attach arbitrary metadata for any Chisel expression
• The FIRRTL compiler can use that metadata later

• E.g. don’t const-propagate, FPGA register preset

• FIRRTL makes it easy to build tooling for RTL designs
• Automatically create:

• Test harness generators
• Macro compilers

• Useful for SRAMs!

• Simulators

• Can benefit from other people’s FIRRTL optimizers

Problems With the Chisel Compiler

• Generated Verilog can be unreadable (e.g. fully unrolled arrays, …)
• This can make debugging and verification more difficult

• Especially for some automated verification tools

• Some HDLs do a much better job with this

• Slow

• Memory hungry
• Makes it hard to run this on a low-end laptop

Chisel/FIRRTL is an integral part of the “Berkeley stack”

• CPUs
• RocketChip: In-order CPU

• 2k GitHub stars, 406 citations

• BOOM: Out-of-order CPU

• Saturn-V: Vectors

• Sodor: Educational

• Accelerators
• Gemmini: DNNs

• Genesis: Genomics

• Protobuf accelerator

• Hardware design frameworks
• Chipyard

• Simulation frameworks
• FireSim

• MIDAS

• TidalSim

People outside Berkeley use Chisel too!

• Industry
• Google, IBM, SiFive, Lampro Mellon, Intel

• Google’s Edge TPU was designed with Chisel

• Academia
• Cornell, Stanford, Technical University of Denmark, LBL, Boston University, UC

Davis, Peking

Some questions to think about

• Is Chisel focusing on the right problems?

• Why do so many people complain about Verilog/VHDL, but they still
keep using it?

• Are HDLs even worth creating anymore?
• Why not focus on HLS instead?

• What other abstractions for generating hardware are possible?

Next Lectures

• SystemVerilog (Vighnesh Iyer)

• NoCs (Jerry Zhao)

EECS251B L02 CHIPYARD 40Nikolić, Spring 2024

	EECS251B : Advanced Digital Circuits and Systems�� Lecture 3 – Design Productivity
	Slide Number 2
	Resources
	Golden Age of Computer Architecture
	Today’s Systems-on-Chip are complex
	Hardware design is relatively slow
	…while algorithms are changing quickly
	Slide Number 8
	Design Abstraction Evolution
	High-Level Synthesis (HLS)
	High-Level Synthesis (HLS)
	Case study: FIR Filter
	Case study: FIR Filter: Default Microarchitecture
	Case study: FIR Filter: Unrolling
	Case study: FIR Filter: Partitioning
	Case study: FIR Filter: Pipelining
	High-Level Synthesis
	Slide Number 18
	Verilog/VHDL
	Slide Number 20
	SystemVerilog
	Chisel
	But surely there must be a catch?
	What about other options?
	Let’s Make an FIR Filter
	Prettier Verilog
	Where Chisel Shines
	Where Chisel Especially Shines
	Generators Make Hardware Reusable
	ChiselTest – A test harness for CHISEL RTL
	Chisel high-points
	Chisel Compiler
	Chisel Compiler
	CHISEL -> FIRRTL -> Verilog
	Advantages of the Chisel Compiler
	Problems With the Chisel Compiler
	Chisel/FIRRTL is an integral part of the “Berkeley stack”
	People outside Berkeley use Chisel too!
	Some questions to think about
	Next Lectures

