
https://inst.eecs.berkeley.edu/~eecs251b/sp23/

Borivoje Nikolić

EECS251B : Advanced Digital Circuits
and Systems

Lecture 7 – RoCC and TileLink

EECS251B L02 CHIPYARD 1Nikolić, Spring 2024

Announcements

• Lab 3 due this week

• Homework 2 will be posted at the end of the week

• Project teaming this week

Nikolić, Spring 2024EECS251B L02 CHIPYARD 2

EECS251B L07 ACCELERATOR INTEGRATION

• Accelerator Integration

• Tightly-coupled Acc. w/ RoCC

• MMIO Acc. w/ TileLink

• Examples

EECS251B L07 ACCELERATOR INTEGRATION

Domain-Specific Accelerators

4

• Customized hardware designed
for a domain of applications.

Apple M1 Chip
2020

* AnandTech

CPU
CPU

GPU

Neural
Engine

Domain-Specific
Accelerators

EECS251B L07 ACCELERATOR INTEGRATION

Accelerators don’t exist in isolation.

5

CPU
CPU

GPU

Neural
Engine

Domain-Specific
Accelerators

http://vlsiarch.eecs.harvard.edu/research/accelerators/die -photo -analysis/

Maltiel consulting estimates Shao et al. IEEE Micro
2015

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

EECS251B L07 ACCELERATOR INTEGRATION

Mobile SoC Usecases

6

• Mainstream architecture has long focused
on general-purpose CPUs and GPUs.

• In an SoC, multiple IP blocks are active at
the same time and communicate frequently
with each other.

• Example:
• Recording a 4K video
• Camera -> ISP

• “Preview stream” for display

• “Video stream” for storage

• DRAM for data sharing

Two Billion Devices and Counting: An Industry Perspective on
the State of Mobile Computer Architecture, IEEE Micro’2018

EECS251B L07 ACCELERATOR INTEGRATION

Mobile SoC Usecases
• Multiple accelerators are running concurrently for different usecases.

7

Accelerators (IPs)
�

Usecases (rows)

C P Us
(AP)

Display Media
S caler G P U

Image
S ignal
P roc.

J P E G
P ixel

Visual
C ore

Video
Decoder

Video
E ncoder

Dozens
More

P hoto E nhancing X X X X X X

Video C apture X X X X X

Video C apture HDR X X X X X

Video P layback X X X X X

Image R ecognition X X X X

Mark Hill and Vijay Janapa Reddi, Gables: A Roofline Model for Mobile SoCs,
HPCA’2019

EECS251B L07 ACCELERATOR INTEGRATION

Full-System Visibility for DL Accelerators

8

EECS251B L07 ACCELERATOR INTEGRATION

Full-System Visibility: Memory Hierarchy

9

9Performance Impacts
Resource contention, cache coherence, etc.

EECS251B L07 ACCELERATOR INTEGRATION

Full-System Visibility: Virtual Addresses

10

10

Performance Impacts
Page faults, TLB hits, etc.

EECS251B L07 ACCELERATOR INTEGRATION

Full-System Visibility: Host CPUs

11

11

Performance Impacts
Unaccelerated kernels, etc.

EECS251B L07 ACCELERATOR INTEGRATION

• Accelerator Integration

• Tightly-coupled Acc. w/ RoCC

• MMIO Acc. w/ TileLink

• Examples

EECS251B L07 ACCELERATOR INTEGRATION

Rocket Custom Coprocessor Interface (RoCC)
• An interface to facilitate easy decoupled communications between the core and the

attached coprocessors.

• The RoCC interface accepts coprocessor commands generated by the Rocket core.

13

EECS251B L07 ACCELERATOR INTEGRATION

RoCC Instruction Format
• The commands include the instruction word and the values in up to two

integer registers, and commands may write an integer register in response.

14

• Xd, xs1, and xs2 are used as valid bits for the register specifiers as whether
the core is using those registers.

EECS251B L07 ACCELERATOR INTEGRATION

Extended RoCC Interface
• Allows the attached coprocessor to share the Rocket core’s data cache and

page table walker and provides a facility for the coprocessor to interrupt the
core.

• These mechanisms are sufficient to construct coprocessors that participate in a page-
based virtual memory system.

• RoCC accelerators may connect to the outer memory system directly over
the TileLink interconnect, providing a high-bandwidth but coherent memory
port.

15

EECS251B L07 ACCELERATOR INTEGRATION

• Accelerator Integration

• Tightly-coupled Acc. w/ RoCC

• MMIO Acc. w/ TileLink

• Examples

EECS251B L07 ACCELERATOR INTEGRATION

Memory-Mapped IO Accelerators
• Loosely-coupled accelerators

• Communicates with the core through memory-mapped registers.
• Instead of being invoked directly through RoCC instructions.

• A commonly-used way to connect loosely-coupled accelerators on
an SoC.

• Access shared data in LLC and/or DRAM
• Can be coherent or not
• ARM’s AXI
• RISC-V’s TileLink

17
https://developer.arm.com/documentation/102202/0200/What-is-AMBA--and-why-use-it-

https://developer.arm.com/documentation/102202/0200/What-is-AMBA--and-why-use-it-

EECS251B L07 ACCELERATOR INTEGRATION

TileLink
• A chip-scale interconnect standard providing coherent memory-mapped

access to memory and other devices.

• Designed for use in a system-on-chip (SoC) to connect general-purpose
multiprocessors, co-processors, accelerators, DMA engines.

• Free and open-source

• RISC-V-based systems

18

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Protocol Levels
• TileLink Uncached Lightweight (TL-UL)

• Only simple memory read/write (Get/Put) operations of single words (similar to AXILite)

• TileLink Uncached Heavyweight (TL-UH)
• Adds various hints, atomic, and burst accesses but w/o coherence (similar to AXI4)

• TileLink Cached (TL-C)
• Complete protocol, which supports use of coherent caches (similar to ACE)

19

https://riscv.org/wp-content/uploads/2017/12/Wed-1154-TileLink-Wesley-Terpstra.pdf

https://riscv.org/wp-content/uploads/2017/12/Wed-1154-TileLink-Wesley-Terpstra.pdf

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Channels

20

Manager to Subordinate

Manager to Subordinate

Manager to Subordinate
Subordinate to Manager

Subordinate to Manager

* Using AXI agent names here
* TileLink Client -> AXI Manager
* TileLink Manager -> AXI Subordinate

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Basics: Messages

• Messages composed of Beats (one beat per clock cycle) containing:
• The unchanging message header, including

• opcode: the message type

• size: base-2 log of the number of bytes in the data payload

• Multi-Beat data payload
• Number of Beats calculated from the message size
• A burst is said to be in progress after the first beat has been accepted and until the last

beat has been accepted.
• When a burst is in progress, if valid is HIGH, the sender must additionally present:

• Only a beat from the same message burst.

• Control signals identical to those of the first beat.

• Data signals corresponding to the previous beat’s address plus the data bus width in bytes.

• Final signals changing only on the final beat.

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Basics: Flow-control
• Beats are regulated by ready-valid handshake
• The receiver provides ready

• If ready is LOW, the receiver must not process the beat and the sender must not consider
the beat processed

• The sender provides valid + the beat payload
• If valid is LOW, the payload may be an illegal TileLink message
• valid must never depend on ready

• If a sender wishes to send a Beat, it must assert valid independently of whether the
receiver signals that it is ready.

• Avoiding deadlock
• Rules that govern the conditions under which a receiving agent may reject a beat of a

message by lowering ready.
• Rules on allowable topologies of a TileLink network: The structure of agents and links must

be a Directed Acyclic Graph (DAG).

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Basics: Flow-Control

A beat is exchanged only when both ready and valid are HIGH

Put Get

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Basics: Request-Response

• Response as early as the same cycle

• Timeouts are forbidden

Max and min delay between a Get (4) and
an AccessAckData (1) on an 8-byte bus.

Max and min delay between a PutFullData (0)
and an AccessAck (0) on an 8-byte bus

EECS251B L07 ACCELERATOR INTEGRATION

TileLink: The Foundation of SiFive’s FU500

25

https://riscv.org/wp-content/uploads/2017/12/Wed-1154-TileLink-Wesley-Terpstra.pdf

https://riscv.org/wp-content/uploads/2017/12/Wed-1154-TileLink-Wesley-Terpstra.pdf

EECS251B L07 ACCELERATOR INTEGRATION

TileLink Examples
• RoCC accelerators: SHA3

• https://github.com/ucb-bar/sha3

• RoCC + TL-UL: protobuf accelerator
• https://github.com/ucb-bar/protoacc

• RoCC + TL-UH: Gemmini accelerator
• https://github.com/ucb-bar/gemmini

• RoCC + TL-UH: Hwacha vector accelerator
• https://github.com/ucb-bar/hwacha

• TL-UH: IceNIC network interface controller for FireSim
• https://github.com/firesim/icenet

26

https://github.com/ucb-bar/sha3
https://github.com/ucb-bar/protoacc
https://github.com/ucb-bar/gemmini
https://github.com/ucb-bar/hwacha
https://github.com/firesim/icenet

EECS251B L07 ACCELERATOR INTEGRATION

Instantiate a TileLink node for your module

27

https://github.com/ucb-
bar/gemmini/blob/master/src/main/scala/gemmini/DMA.scala#L348

https://github.com/ucb-bar/gemmini/blob/master/src/main/scala/gemmini/DMA.scala#L348
https://github.com/ucb-bar/gemmini/blob/master/src/main/scala/gemmini/DMA.scala#L348

EECS251B L07 ACCELERATOR INTEGRATION

• Accelerator Integration

• Tightly-coupled Acc. w/ RoCC

• MMIO Acc. w/ TileLink

• Examples

EECS251B L07 ACCELERATOR INTEGRATION

Gemmini: Full-System Co-Design of Hardware Accelerators

29

• Full-stack
• Includes OS
• End-to-end workloads
• “Multi-level” API

• Full-SoC
• Host CPUs
• Shared memory hierarchies
• Virtual address translation

https://github.com/ucb -
bar/gemmini

[DAC’2021 Best Paper Award]

https://github.com/ucb-bar/gemmini
https://github.com/ucb-bar/gemmini

EECS251B L07 ACCELERATOR INTEGRATION

Using RoCC + TileLink w/ Gemmini
• How Gemmini, a DNN accelerator, uses RoCC and TileLink

• How does Gemmini read data from main memory into Gemmini’s scratchpad?

1. Host CPU encounters unknown RISC-V instruction

30

Unknown opcode rs1 rs2

EECS251B L07 ACCELERATOR INTEGRATION

Using RoCC + TileLink w/ Gemmini
• How Gemmini, a DNN accelerator, uses RoCC and TileLink

• How does Gemmini read data from main memory into Gemmini’s scratchpad?

1.Host CPU encounters unknown RISC-V instruction

2.Host CPU dispatches unknown instruction to RoCC accelerator
a.As well as Rs1 and Rs2 contents (128 bits extra bits)

31

CPU Gemmini
Unknown opcode rs1 rs2

Rs1 contents

Rs2 contents

EECS251B L07 ACCELERATOR INTEGRATION

Using RoCC + TileLink w/ Gemmini
• How Gemmini, a DNN accelerator, uses RoCC and TileLink

• How does Gemmini read data from main memory into Gemmini’s scratchpad?

1.Host CPU encounters unknown RISC-V instruction

2.Host CPU dispatches unknown instruction to RoCC accelerator
a.As well as Rs1 and Rs2 contents (128 bits extra bits)

3.Gemmini decodes instruction
a.It’s a load instruction!

32

Unknown opcode rs1 rs2

Load data Main memory address Scratchpad address

EECS251B L07 ACCELERATOR INTEGRATION

Using RoCC + TileLink w/ Gemmini
• How Gemmini, a DNN accelerator, uses RoCC and TileLink

• How does Gemmini read data from main memory into Gemmini’s scratchpad?

1.Host CPU encounters unknown RISC-V instruction

2.Host CPU dispatches unknown instruction to RoCC accelerator
a.As well as Rs1 and Rs2 contents (128 bits extra bits)

3.Gemmini decodes instruction
a.It’s a load instruction!

4.Gemmini asks CPU’s page table walker to translate addresses in Rs1, Rs2
a.PTW is only available through RoCC interface

33

EECS251B L07 ACCELERATOR INTEGRATION

Using RoCC + TileLink w/ Gemmini
• How Gemmini, a DNN accelerator, uses RoCC and TileLink

• How does Gemmini read data from main memory into Gemmini’s scratchpad?

1.Host CPU encounters unknown RISC-V instruction

2.Host CPU dispatches unknown instruction to RoCC accelerator
a.As well as Rs1 and Rs2 contents (128 bits extra bits)

3.Gemmini decodes instruction
a.It’s a load instruction!

4.Gemmini asks CPU’s page table walker to translate addresses in Rs1, Rs2
a.PTW is only available through RoCC interface

5.Gemmini sends TileLink requests to read data from main memory
a.Often, multiple TileLink requests must be sent, due to TileLink’s alignment and length

limitations

34

EECS251B L07 ACCELERATOR INTEGRATION

Review
• Accelerators don’t exist in isolation.
• RoCC for tightly-coupled accelerators
• TileLink for loosely-coupled, MMIO accelerators
• Examples:

• RoCC accelerators: SHA3
• https://github.com/ucb-bar/sha3

• RoCC + TL-UL: protobuf accelerator
• https://github.com/ucb-bar/protoacc

• RoCC + TL-UH: Gemmini accelerator
• https://github.com/ucb-bar/gemmini

• RoCC + TL-UH: Hwacha vector accelerator
• https://github.com/ucb-bar/hwacha

• TL-UH: IceNIC network interface controller for FireSim
• https://github.com/firesim/icenet

35

https://github.com/ucb-bar/sha3
https://github.com/ucb-bar/protoacc
https://github.com/ucb-bar/gemmini
https://github.com/ucb-bar/hwacha
https://github.com/firesim/icenet

	EECS251B : Advanced Digital Circuits and Systems�� Lecture 7 – RoCC and TileLink
	Announcements
	Slide Number 3
	Domain-Specific Accelerators
	Accelerators don’t exist in isolation.
	Mobile SoC Usecases
	Mobile SoC Usecases
	Full-System Visibility for DL Accelerators
	Full-System Visibility: Memory Hierarchy
	Full-System Visibility: Virtual Addresses
	Full-System Visibility: Host CPUs
	Slide Number 12
	Rocket Custom Coprocessor Interface (RoCC)
	RoCC Instruction Format
	Extended RoCC Interface
	Slide Number 16
	Memory-Mapped IO Accelerators
	TileLink
	TileLink Protocol Levels
	TileLink Channels
	TileLink Basics: Messages
	TileLink Basics: Flow-control
	TileLink Basics: Flow-Control
	TileLink Basics: Request-Response
	TileLink: The Foundation of SiFive’s FU500
	TileLink Examples	
	Instantiate a TileLink node for your module
	Slide Number 28
	Gemmini: Full-System Co-Design of Hardware Accelerators
	Using RoCC + TileLink w/ Gemmini
	Using RoCC + TileLink w/ Gemmini
	Using RoCC + TileLink w/ Gemmini
	Using RoCC + TileLink w/ Gemmini
	Using RoCC + TileLink w/ Gemmini
	Review

