https://inst.eecs.berkeley.edu/~eecs251b/sp24/

EECS251B Advanced Digital Circuits and Systems

Lecture 5&6 – System Interconnect

Borivoje Nikolic

Tuesdays and Thursdays 9:30-11am

Cory 521

Power and Performance Trends

 With clock frequencies saturating CPUs
 started using many
 cores to leverage
 parallelism and deal
 with fabrication yields

Manycore System Roadmap

3

The rise of manycore machines

Only way to meet future system feature set, design cost, power, and performance requirements is by programming a processor array

- Multiple parallel general-purpose processors (GPPs)
- Multiple application-specific processors (ASPs)

1

Interconnect bottlenecks

Scaling to many cores

Processor + Router Reque DIMM DIMM DRAM DRAM DRAM DRAM DRAM Processor Router Memory Controller Response

TILE64

[Bell08]

- Networks-on-chip
 - Many meshes
 - Slow, latency varies greatly
 - Easy to implement
 - Large crossbars
 - Fast, predictable latency
 - Hard to build and scale
 - Rings

Rainbow-Falls 2-stage Crossbar

Recent trends

[AMD] Milan/Rome CPUs >100B Transistors 8 CPU die 1 I/O die 64 cores/128 Threads 280W

[Cerebras Systems] WSE-2 2.6T Transistors 850,000 Al optimized cores 15kW 40GB on-chip SRAM Mem BW 20PB/s (on-chip) On-chip Fabric BW 220Pb/s

[Intel] Ponte Vecchio GPU >100B Transistors 47 Active Tiles 120GB on-package HBM Multi-package interconnect

Compute Tile

RAMBO

intel 7

O

8

Package

Compute Tile

RAMBO

intel 7

Rack-scale systems

Dojo Training Tile

V1 Dojo Training Matrix

Expansion of memory-semantic fabrics

32 DGXs / 256 GPUs

80

6,400

100

512

57,600

450

9x

DGX H100 256 SuperPOD

4.5x

- Networking Basics
- Building Blocks
- Evaluation

- Networking Basics
 - Topologies
 - Routing
 - Flow-Control
- Building Blocks
- Evaluation

• Networking Basics

- Topologies
- Routing
- Flow-Control
- Building Blocks
- Evaluation

Topologies

- Shared-bus
 - Advantages: cheap & easy to implement, broadcast, serialized messages
 - Disadvantages: low bandwidth, tri-state logic
- Crossbar all-to-all connection
 - Advantages: high bandwidth due to all-to-all routing, no contention, serialized messages, predictable latency
 - Disadvantages: O(n²) scaling, scales poorly past 4x4 networks

- 1D torus/ring (unidirectional/bidirectional)
 - Advantages: simple to implement, well-behaved
 - Disadvantages: low bisection bandwidth, high-hop-count
- 2D mesh
 - Advantages: scalable with good bandwidth/low-latency
 - Disadvantages: complex routing for deadlock-freedom

These are **network-on-chips (NoCs)**, with proper routers and channels

3D Topologies

- Before single-chip multicores, 3D topologies were used for rack-scale computers
 - SGI Origin 2000
 - Hyper-cube topology to maximize bandwidth
- 3D topologies don't match
 2D silicon architectures
- New opportunities with 3D stacking

Network topology spectrum

Connect physical implementation (channels, routers, power) with network topology, routing and flow-control

Ideal network throughput (capacity)

N = number of cores b = router-to-router link bandwidth b_{core} = rate at which each core generates traffic

- Maximum traffic that can be sustained by all cores
- Mesh throughput
 - 50% of data crosses the bisection assuming uniform random traffic
- Bisection bandwidth = $2\sqrt{N}b$
- Data crossing the bisection = $\frac{1}{2}Nb_{core}$
- Maximum throughput

$$\Theta_{ideal} = Nb_{core} = 4\sqrt{N}b$$

To maximize bandwidth, a topology should saturate the bisection bandwidth

Tori

- Low-radix, large diameter networks
- N-ary, K-cube (mesh)
 - N nodes per dimension
 - K dimensions

[Dally04]

• Cubes have 2x larger bisection bandwidth

TILE64

- 64 cores at 750 MHz
- Memory BW 25 GB/s
- 240 GB/s bis. Bw

TILE64 Networks

[Wentzlaff07]

STN – Static network TDN – Tile Dynamic network UDN – User Dynamic network MDN – Memory Dynamic network IDN – I/O Dynamic network

32 bit channels on all networks

Wormhole, dimension-order routed

5-port routers with credit-based flow-control

STN – Scalar operand network

TDN and MDN implement the memory sub-system

UDN/IDN – Directly accessible by processor ALU (message-based, variable length)

Improving Tori - Express cubes

- Increase bisection bandwidth, reduce latency
 - Add expressways long "express" channels

One dimension of 16-ary express cube with 4-hop express channels

Add extra channels to diversify and/or increase bisection

Buterflies

- N-ary, K-fly
 - N nodes per switch
 - K stages
- Example
 - 2-ary 4 fly

[Dally04]

Path diversity problem

- Butterflies have no path diversity
- Bad performance for some traffic patterns
 - e.g. shuffle permutation

- Wide spread in BW
- Inherently blocking
- Fixed in Clos topologies

[Dally04]

Clos networks

[Clos53]

8-ary 2-fly Butterfly 0-7 (8)-15-16-23-24-31-32-39-40-47-(48)-65 (56)

Redundant paths – more uniform throughput

Logical to Physical Mapping

Three 8 x 8 Routers (I-VIII, a-h, A-H) 8-ary 3-stage Clos

- Two 8 x 8 Routers (I-VIII,a-h)
- Eight 8 x 8 Routers (middle stage A-H)
- Same topology different physical mapping

Topology comparison

[Joshi10]

Table 1: Comparison of network parameters – Networks sized to support 128 bits/cycle per tile under uniform random traffic. N_c = number of channels, b_C = bits/channel, N_{BC} = number of bisection channels, N_R = number of routers, H = number of routers along data paths, T_R = router latency, T_C = channel latency, T_{TC} = latency from tile to first router, T_S = serialization latency, T_0 = zero load latency. *Crossbar "channels" are the shared crossbar buses.

Networking Basics

- Topologies
- Routing
- Flow-Control
- Building Blocks
- Evaluation

Routing Algorithms

• Deterministic routing algorithms

- Always same path between x and y
 - Poor load balancing (ignore inherent path diversity)
 - Quite common in practice
 - Easy to implement and make deadlock-free.

• Oblivious algorithms

- Choose a route w/o network's present state
 - E.g. random middle-node in Clos

• Adaptive algorithms

- Use network's state information in routing
 - Length of queues, historical channel load, etc

Deterministic Routing

Destination-tag

Butterflies

Dimension-order

Tori

Oblivious Routing

• Valiant's algorithm (Randomized Routing)

Folded Clos (Fat Tree)

Randomly select middle switch

[Dally04]

Randomly select middle node Dimension-order to/from node

Randomly select

nearest common ancestor switch

Networking Basics

- Topologies
- Routing
- Flow-Control
- Building Blocks
- Evaluation

Message definitions

³²

Bufferless flow-control (Circuit Switching)

- Buffered flow-control (Packet Switching)
 - Packet-based (store&forward, cut-through)
 - Flit-based (wormhole, virtual channels)

- Buffer Management
 - Credit-based, on-off, flit-reservation

Circuit switching

• Pros

• Simple to implement (simple routers, small buffers)

• Cons

• High latency (R+A) and low throughput

Example - Pipelined Circuit Switching

Packet-buffered Flow Control

Buffer and channel allocated to the whole packet

Store-and-forward

[Dally04]
Flit-buffered Flow Control Buffer and channel allocated to flits [Dally04] • Wormhole I - idle, W - waiting, A - allocatedVC state Output ΑU WU Flit buffers -WU U L L ► ΒВ ΠH ТВ-T B B ΒH TBBHн (c - 2 cycles) (d) (a) (b) channel blocked ΑU ΑU U U ►BH ►BB ►ТВВН H B BT (g) (e) (f) tail flit frees-up channel Out HBBT More efficient buffer usage than cut-through abccdefg But, may block a channel mid-packet Cycle

Flit-buffered Flow Control

• Wormhole vs. Virtual-Channel

38

Virtual-channels – Bandwidth Allocation

Virtual-channel Router

Each channel only as deep as round-trip credit latency

More buffering, more virtual channels

Credit-based buffer management

41

Lecture Roadmap

- Networking Basics
- Building Blocks
 - Channels
 - Routers
- Evaluation

Building block costs

- Simple routers and channels roughly balanced
- Narrower networks scale better

90nm technology

Channels: Electrical technology

Repeater inserted pipelined wires

- Design constraints
 - 22 nm technology
 - 500 nm pitch
 - 5 GHz clock
- Design parameters
 - Wire width
 - Repeater size
 - Repeater spacing

Channels: Equalized interconnects

- FFE shapes transmitted pulse
- DFE cancels first trailing ISI tap
- Lower energy cost due to output voltage swing attenuation

Repeated interconnects vs Equalized interconnects

Data-dependent energy (DDE) is 4-10x lower for equalized interconnects, while fixed energy (FE) is comparable

Routers

Router pipeline

• Pipelined routing of a packet

RC – route computation VA – virtual channel allocation SA – switch allocation ST – switch traversal

Pipeline stalls (virtual-channel allocation stall – output VC)

VC stall need not slow transmission over the input channel as long as there is sufficient buffer space (in this case, six flits) to hold the arriving head and body flits until they are able to begin switch traversal.

Speculation and Lookahead

Speculative allocation

Lookahead routing (pass routing for next hop in head flit)

Crossbar switches

50

Router design space exploration - Setup

Example System

Router

- 64 tiles.
- 1GHz frequency
- 1 Message = 512-bits
- 4 Messages per input port (2048-bits)
- Router Aspect Ratio 1
- p = 5, 8, 12
- w = 32, 64, 128 (bits)
- Matrix xbar
- Mux xbar

5x5 Router Floorplan (128bit)

8x8 Routers Floorplan (128bit)

12x12 Routers Floorplan (128bit)

() 1	2	3	4	5	6	7
8	3 9	10	11	12	13	14	15
16	i 17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	2 33	34	35	36	37	38	39
40) 41	42	43	44	45	46	47
48	3 49	50	51	52	53	54	55
56	5 57	58	59	60	61	62	63

Area vs Port Width and Radix

- Mux crossbar always better
- 5-12 port routers scale well (sub p², b²)

Power vs Port Width and Radix

- Mux crossbar always better
- 5-12 port routers scale well (sub p², b²)

Router Power Breakdown

Router Power Breakdown 1800 Arbiter 1600 . _ _ _ _ . Xbar 1400 ----Buffer 1200 Power (mW) 1000 800 600 400 200 0 5p-mat 5p-mat 5p-mat 8p-mat 8p-mat 8p-mat 12p-mat 5p-mux 5p-mux 5p-mux 8p-mux 8p-mux 8p-mux 12p-mat 12p-mux 12p-mux 12p-mat 12p-mux 32 128 32 64 128 32 64 128 32 64 128 32 32 64 64 128 64 128

Xbar and Buffer power roughly even

Improve Xbar with Ckt/channel design (equalized, low-swing)

Use less buffers (circuit switching, token flow control) [Anders08, Kumar08]

Router Area per core vs. # Ports

Ports

Effects of Concentration

- Mesh to Cmesh
 - 5p routers to 8p routers

Matrix Design	Area (mm²)	Power (mW)	
4 x 5p32b-mat	1.1664	332.304	
1 x 8p64b-mat	0.4356	246.3924	
4 x 5p64b-mat	1.2996	484.4544	
1 x 8p128b-mat	0.8836	568.2672	
2 x 8p32b-mat	0.5832	264.6312	
1 x 12p64b-mat	0.6889	546.8928	
2 x 8p64b-mat	0.8712	492.7848	
1 x 12p128b-mat	1.7424	1584.54	
8 x 5p32b-mat	2.3328	664.608	
1 x 12p128b-mat	1.7424	1584.54	

Mux Design	Area (mm²)	Power (mW)
4 x 5p32b-mux	1.1664	268.3056
1 x 8p64b-mux	0.3721	203.268
4 x 5p64b-mux	1.2544	410.5872
1 x 8p128b-mux	0.7225	391.0116
2 x 8p32b-mux	0.5832	215.8464
1 x 12p64b-mux	0.5625	389.5896
2 x 8p64b-mux	0.7442	406.536
1 x 12p128b-mux	1.2769	926.2188
8 x 5p32b-mux	2.3328	536.6112
1 x 12p128b-mux	1.2769	926.2188

• Works well for small flits and number of ports

Orion 2.0 vs P & R design

ISSCC 2010 TUTORIAL

Lecture Roadmap

- Networking Basics
- Building Blocks
- Evaluation

Latency Components

- Zero-load latency
 - Average latency w/o contention

Network performance plots

Clos with electrical interconnects

Two 8 x 8 Routers
Eight 8 x 8 Routers

8-ary 3-stage Clos

- 10-15 mm channels
- Equalized
- Pipelined Repeaters

Simulation setup

- Cycle-accurate microarchitectural simulator
- Traffic patterns based on partition application model
 - Global traffic UR, P2D, P8D
 - Local traffic P8C
- 64-tile system, 512-bit messages
- Events captured during simulations to calculate power

Partition application model

- Tiles divided into logical partitions and communication is within partition
- Logical partitions mapped to physical tiles
 - Co-located tiles \rightarrow Local traffic
 - Distributed tiles \rightarrow Global traffic

Uniform random (UR)

2 tiles per partition that are distributed across the chip (P2D)

are distributed across the chip (P8D)

8 tiles per partition that 8 tiles per partition that are co-located (P8C)

[Joshi'09]

Ideal Throughput $\theta_T = 8 \text{ kb/cyc}$ for UR

- flatFlyX2 vs mesh/cmeshX2
 - Saturation $BW \rightarrow$ comparable (UR, P8D, P2D)
 - Latency \rightarrow flatFlyX2 has lower latency
- clos vs mesh/cmeshX2/flatFlyX2
 - Saturation BW \rightarrow uniform for all traffic, comparable to UR of mesh
 - Latency \rightarrow uniform for all traffic, comparable to UR of mesh

Mesh vs CMeshX2

mesh

cmeshX2

cmeshX2

- Repeater-inserted interconnects
 - cmeshX2 lower power than mesh at comparable throughput
- Equalized interconnects
 - cmeshX2 has further 1.5x reduction in power
 - Channel gains masked by router power

Power vs BW plots - repeater inserted pipelined vs equalized

- Channel DDE reduces by 4-10x using equalized links
- Channel fixed power and router power need to be tackled

Latency vs BW – no VC vs 4 VCs

Saturation throughput improves using VCs Small change in power at comparable throughput

Power vs BW – no VC vs 4 VCs, repeater inserted pipelined

Power vs BW– no VC case, repeater inserted pipelined vs 4 VCs, equalized

Power split

- VCs an indirect way to increase impact of channel power
 - Narrower networks, lower power for same throughput, keep utilization high

- Cross-cut approach for on-chip system interconnects design needed
 - Application mapping
 - **Topology, Routing, Flow-control**
 - Improving Routers and Channels equally important
 - New circuit design (low-swing, equalized)
 - □ System DVFS, bus-encoding

To probe further (tools and sites)

- DSENT A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling
 - https://dspace.mit.edu/handle/1721.1/85863
- Orion Router Design Exploration Tool
 - <u>https://github.com/eigenpi/vnoc20</u>
- Router RTLs
 - Bob Mullins' Netmaker (<u>http://www-dyn.cl.cam.ac.uk/~rdm34/wiki</u>)
- Network simulators
 - Garnet (<u>http://www.princeton.edu/~niketa/garnet.html</u>)
 - Booksim (<u>http://nocs.stanford.edu/booksim.html</u>)

Generating Network-on-Chips

- Constellation a Chisel network-onchip generator
- Generate realistic interconnects for modern SoCs
- Configurable routing/topology/micro-architecture
- constellation.readthedocs.io
- If interested, email me –
 jzh@berkeley.edu

80

Bibliography

- [Agarwal09] N. Agarwal, T. Krishna, L.-S. Peh and N. K. Jha, "GARNET: A Detailed On-Chip Network Model inside a Full-System Simulator " In Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Boston, Massachusetts, April 2009.
- [Anders08] M. Anders, H. Kaul, M. Hansson, R. Krishnamurthy, S. Borkar "A 2.9Tb/s 8W 64-Core Circuit-switched Network-on-Chip in 45nm CMOS," European Solid-State Circuits Conference, 2008.

[Balfour06] J. Balfour and W. Dally ,"Design tradeoffs for tiled CMP on-chip networks.," Int'l Conf. on Supercomputing, June 2006.

[Bell08] S. Bell et al "TILE64TM Processor: A 64-Core SoC with Mesh Interconnect," ISSCC pp. 88-598, 2008.

[Benini02] L. Benini and G. de Micheli, "Networks on Chips: A New SoC Paradigm," in Computer Magazine, vol. 35 issue 1, pp. 70-78, 2002.

[Clos53] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal, 32:406-424, 1953.

[Dally92] W. J. Dally, "Virtual-channel flow control," IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–205, 1992.

[Dally01] W. J. Dally and B. Towles, "Route Packets, Not Wires: On-chip Interconnection Networks," DAC 2001, pp. 684-689.

[Dally04] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.

[Gunn06] C. Gunn, "CMOS photonics for high-speed interconnects,"IEEE Micro, 26(2):58-66, Mar./Apr. 2006.

- [Joshi09] Joshi, A., B. Kim, and V. Stojanović,"Designing Energy-efficient Low-diameter On-chip Networks with Equalized Interconnects," *IEEE Symposium on High-Performance Interconnects*, New York, NY, 10 pages, August 2009.
- [Kahng09] A. Kahng, B. Li, L-S. Peh and K. Samadi "ORION 2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage Design Space Exploration" in Proceedings of Design Automation and Test in Europe (DATE), Nice, France, April 2009

Bibliography

- [Kim07] J. Kim, J. Balfour, and W. J. Dally, "Flattened butterfly topology for on-chip networks," in Proc. 40th Annual IEEE/ACM International Symposium on Microarchitecture MICRO 2007, 1–5 Dec. 2007, pp. 172–182
- [Kim08] B. Kim and V. Stojanovic "Characterization of equalized and repeated interconnects for NoC applications," IEEE Design and Test of Computers, 25(5):430–439, 2008.

[Kim09] B. Kim and V. Stojanovic, "A 4Gb/s/ch 356fJ/b 10mm equalized on-chip interconnect with nonlinear charge injecting

transmitter filter and transimpedance receiver in 90nm cmos technology," in Proc. Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2009, pp. 66–67, 8–12 Feb. 2009.

- [Krishna08] T.Krishna, A. Kumar, P. Chiang, M. Erez and L-S. Peh, "NoC with Near-Ideal Express Virtual Channels Using Global-Line Communication "In Proceedings of Hot Interconnects (HOTI), Stanford, California, August 2008.
- [Kumar08] A. Kumar, L-S. Peh and N. Jha, "Token Flow Control," in Proceedings of 41st International Symposium on Microarchitecture (MICRO), Lake Como, Italy, November 2008.
- [Mensink07] E. Mensink et al., "A 0.28pJ/b 2Gb/s/ch transceiver in 90nm CMOS for 10 mm on-chip interconnects," in Proc. Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2007, 11–15 Feb. 2007, pp. 414–612.
- [Nawathe08] U. Nawathe et al., "Implementation of an 8-core, 64-thread, power-efficient SPARC server on a chip," IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 6–20, Jan. 2008
- [Orcutt08] J. Orcutt et al "Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process," Conf. on Lasers and Electro-Optics, May 2008.

Bibliography

[Patel09] S. Patel "Rainbow Falls: Sun's Next Generation CMT Processor", Hot Chips 2009.

[Shacham07] A. Shacham et al "Photonic NoC for DMA communications in chip multiprocessors," Symp. on High Performance Interconnects, Aug. 2007.

[Shamim09] I. Shamim, Energy Efficient Links and Routers for Multi-Processor Computer Systems, M.S. Thesis, MIT

[Vangal07] S. Vangal et al., "80-tile 1.28 TFlops network-on chip in 65 nm CMOS," Int'l Solid-State Circuits Conf., Feb. 2007

[Wang03] H. Wang, L. Peh, and S. Malik, "Power-driven design of router microarchitectures in on-chip networks," IEEE Micro-36, pp.105–116, 2003

[Wentzlaff07] D. Wentzlaff et al "On-chip Interconnection Architecture of the Tile Processor," IEEE Micro, Volume 27, no. 5, pp.15 - 31, Sept.-Oct. 2007.