
T
he rapid cadence of metal-oxide semiconductor field-effect transistor (MOSFET)
scaling, as seen in the new 2003 International Technology Roadmap for Semiconductors
(ITRS) [1], is accelerating introduction of new technologies to extend complementary
MOS (CMOS) down to, and perhaps beyond, the 22-nm node. This acceleration

simultaneously requires the industry to intensify research on two highly challenging thrusts:
one is scaling CMOS into an increasingly difficult manufacturing domain well below the 90-nm
node for high performance (HP), low operating power (LOP), and low standby power (LSTP)
applications, and the other is an exciting opportunity to invent fundamentally new approaches to
information and signal processing to sustain functional scaling beyond the domain of CMOS.
This article is focused on scaling CMOS to its fundamental limits, determined by manufacturing,
physics, and costs using new materials and nonclassical structures. The companion articles in
this issue address possible approaches for extending information processing into new realms of
performance and application using new memory devices, logic devices, and architectures. The
primary goal of these articles is to stimulate invention and research leading to feasibility
demonstration for one or more roadmap-extending concepts.

The following provides a brief introduction to each of the new nonclassical CMOS
structures. This is followed by a presentation of one scenario for introduction of new structural
changes to the MOSFET to scale CMOS to the end of the ITRS. A brief review of electrostatic
scaling of a MOSFET necessary to manage short channel effects (SCEs) at the most advanced
technology nodes is also provided.

NONCLASSICAL CMOS STRUCTURES
Nonclassical CMOS includes those advanced MOSFET structures shown in Table 1(a) and (b),
which, combined with material enhancements, such as new gate stack materials, provides a path
to scaling CMOS to the end of the roadmap. For digital applications, scaling challenges include
controlling leakage currents and short-channel effects, increasing drain saturation current while
reducing the power supply voltage, and maintaining control of device parameters (e.g., threshold
voltage and leakage current) across the chip and from chip to chip. For analog/mixed-signal/RF
applications, the challenges additionally include sustaining linearity, low noise figure, high
power-added efficiency, and good transistor matching.

The industrial and academic communities are pursuing two avenues to meeting these chal-
lenges—new materials and new transistor structures. New materials include those used in the
gate stack (high-κ dielectrics and electrode materials), those used in the conducting channel that
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have improved carrier transport properties, as well as new
materials used in the source/drain regions with reduced resis-
tance and improved carrier injection properties. New transis-
tor structures seek to improve the electrostatics of the
MOSFET, provide a platform for introduction of new materi-
als, and accommodate the integration needs of new materials.
The following provides a brief introduction and overview to
each of these nonclassical CMOS structures given in Table
1(a) and (b).

Transport-enhanced MOSFETs [2]–[16] are those struc-
tures for which increased transistor drive current for
improved circuit performance can be achieved by enhancing
the average velocity of carriers in the channel. Approaches to
enhancing transport include mechanically straining the chan-
nel layer to enhance carrier mobility and velocity, and
employing alternative channel materials such as silicon-ger-
manium, germanium, or III-V compound semiconductors
with electron and hole mobilities and velocities higher than
those in silicon. A judicious choice of crystal orientation and
current transport direction may also provide transport
enhancement [17]. However, an important issue is how to fab-
ricate transport enhanced channel layers (such as a strained Si
layer) in several of the nonclassical CMOS transistor struc-
tures [e.g., the multiple gate structures discussed in Table
1(b)]. Researchers have recently demonstrated that a strained
Si-on-insulator (SOI) substrate technology can be used to
combine the advantages of the ultra-thin body (UTB) struc-
ture and enhanced carrier
transport [18]–[20].

The UTB SOI MOSFET
[21]–[31] consists of a very
thin ( tSi ≤ 10 nm), fully
depleted (FD) transistor body
to ensure good electrostatic
control of the channel by the
gate in the off state. Typically,
the ratio of the channel
length to the channel thick-
ness will be ≥ 3. Therefore,
an extremely thin ( tSi < 4
nm) Si channel is required to
scale CMOS to the 22-nm
node. The use of a lightly
doped or undoped body pro-
vides immunity to Vt varia-
tions due to statistical dopant
fluctuations, as well as
enhanced carrier mobilities
for higher transistor drive
current. The localized and
ultra-thin buried oxide (BOX)
FET [32]–[40] is an UTB SOI-
like FET in which a thin Si
channel is locally isolated
from the bulk-Si substrate by
a thin (10–30 nm) buried

dielectric layer. This structure combines the best features of
the classical MOSFET (e.g., deep source/drain contact regions
for low parasitic resistance) with the best features of SOI tech-
nology (improved electrostatics). The increased capacitive cou-
pling between the source, drain, and channel with the
conducting substrate through the ultra-thin BOX has the
potential of reducing the speed of the device, and improving
it’s electrostatic integrity. The former may be traded against
the latter by reducing the channel doping, which eventually
leads to moderately improved speed for a constant Ioff. 

Engineering the source/drain is becoming critically impor-
tant to maintaining the source and drain resistance to be a
reasonable fraction (∼10%) of the channel resistance. Conse-
quently, a new category of source/drain engineered MOSFETs
[41]–[52] is introduced to address this issue. Two sub-catego-
ry structures are described for providing engineered
source/drain structures. First is the Schottky source/drain
structure [41]–[48]. In this case, the use of metallic source
and drain electrodes minimizes parasitic series resistance and
eliminates the need for ultra-shallow p–n junctions. Metals or
silicides that form low (near zero) Schottky barrier heights in
contact with silicon (i.e., a low-work-function metal for NMOS,
and a high-work-function metal for PMOS) are required to
minimize contact resistance and maximize transistor drive
current in the on state. A UTB is needed to provide low leakage
in the off state. Second is the reduced fringing/overlap gate
FET [49]–[52]. As MOSFET scaling continues, the parasitic
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1. Estimation of electrostatic integrity (EI) for bulk and double-gate FETs.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

020406080100120

CMOS Node

(b)

E
I

0

5

10

15

20

25

30

35

T
si

 (
nm

)

EI Bulk EI DG Tsi

Tolerable EI

Low Operation
Power

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

020406080100120

CMOS Node

(a)

E
I

0

5

10  

15  

20  

25  

30  

35

T
si

 (
nm

)

  

High Performance

 

 

 

 

 

EI Bulk EI DG  Tsi 

Tolerable EI

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

020406080100120

CMOS Node

(c)

E
I

0

5

10

15

20

25

30

35

T
si

 (
nm

)

EI Bulk EI DG Tsi

Low Standby
Power

Tolerable EI



■ 18 IEEE CIRCUITS & DEVICES MAGAZINE  ■ JANUARY/FEBRUARY 2005

Table 1(a). Single-gate Nonclassical CMOS Technologies.

Transport-Enhanced 
MOSFETs UTB SOI MOSFETs Source/Drain Engineered MOSFETs

Device

Concept Strained Si, Ge, SiGe, Fully depleted SOI Ultra-thin channel Schottky source/drain Non-overlapped S/D
SiGeC or other with body thinner and localized extensions on bulk,
semiconductor; on than 10 nm ultra-thin BOX SOI, or DG devices
bulk or SOI

Application/Driver HP CMOS [2] HP, LOP, and LSTP HP, LOP, and LSTP HP CMOS [2] HP, LOP, and LSTP  
CMOS [2] CMOS [2] CMOS [2]

Advantages • High mobility • Improved • SOI-like structure • Low source/drain • Reduced SCE and 
subthreshold slope on bulk resistance DIBL

• No floating body • Shallow junction by • Reduced parasitic 
• Potentially lower Eeff geometry gate capacitance

• Junction silicidation 
as on bulk 

• Improved S-slope and 
SCE

Particular Strength • High mobility • Low diode leakage • Quasi-DG operation due • No need for abrupt S/D • Very low gate 
without change • Low junction to ground plane effect doping or activation capacitance 
in device capacitance enabled by the ultra thin 
architecture • No significant change BOX

in design with respect • Bulk compatible 
to bulk

Potential Weakness • Material defects and • Very thin silicon • Ground plane capacitance • Ultra-thin SOI required • High source/drain 
diode leakage (only required with low • Selective epi required • NFET silicide material resistance
for bulk) defect density for channel and S/D not readily available • Reliability

• Process compatibility • Vth adjustment • Parasitic potential • Advantageous only 
and thermal budget difficult barrier for very short 

• Operating temperature • Selective epi required devices
for elevated S/D

Scaling Issues Bandgap usually Control of Si film Process becomes easier No particular scaling Sensitivity to Lg
smaller than Si thickness with Lg down-scaling issue variation

(shorter tunnel)

Design Challenges Compact model needed None None Compact model needed Compact model needed

Gain/Loss in Layout No difference No difference No difference No difference No difference
compared to Bulk

Impact on Ion/Ioff • Improved by 20–30% • Improved by 15–20% • Improved by 15–20% • Improved by 10–15% • Both shifted to 
compared to Bulk (from MASTAR (from MASTAR (from MASTAR (from MASTAR lower values

supposing µeffX2) supposing Eeff/2 and supposing Eeff/2 and supposing Rseries = 0)
S = 75 mV/decade) S = 75 mV/decade)

Impact on CV/I • Lowered by 15–20% • Lowered by 10–15% • Lowered by 10–15% • Lowered by 10–15% • Constancy or gain
compared to Bulk (from MASTAR (from MASTAR (from MASTAR (from MASTAR due to lower 

supposing µeffX2) supposing Eeff/2 and supposing Eeff/2 and supposing Rseries = 0) gate capacitance 
S = 75 mV/decade) S = 75 mV/decade)

Analog Suitability Not clear Potential for slight Potential for slight Not clear Not clear 
Gm/Gd advantage improvement improvement
compared to Bulk
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capacitance between the gate and source/drain detrimentally
affects circuit performance, and its impact becomes more
significant as the gate length is scaled down. For gate
lengths below ∼20 nm, transistor optimization for peak cir-
cuit performance within leakage current constraints will
likely dictate a structure wherein the gate electrode does not
overlap the source or drain to minimize the effect of para-
sitic fringing/overlap capacitance. Due to lengthening of its
electrical channel, the nonoverlapped gate structure does
not require ultra-shallow source/drain junctions in order to
provide good control of short-channel effects. Also, the

increase of source/drain resistance usually expected for the
nonoverlap transistor is reduced with decreasing gate
length, thus providing a new optimization paradigm for
extremely short devices.

As illustrated in Table 1(b) and described in the following,
a variety of multiple-gate nonclassical CMOS structures
[53]–[92] have been proposed and demonstrated to help man-
age electrostatic integrity (i.e., SCEs) in ultra scaled CMOS
structures. In the first of these structures, the N-gate (N > 2)
MOSFET [53]–[59], current flows horizontally (parallel to the
plane of the substrate) between the source and drain along



vertical channel surfaces, as well as one or more horizontal
channel surfaces. The large number of gates provides for
improved electrostatic control of the channel, so that the Si
body thickness and width can be larger than for the UTB SOI
and double-gate FET structures, respectively. The gate elec-
trodes are formed from a single deposited gate layer and are
defined lithographically. They are tied together electrically
and are self-aligned with each other as well as the
source/drain regions. The principal advantage of the structure
resides in the relaxation of the needs on the thinness of the Si
body or the vertical fin. The challenge is in slightly poorer
electrostatic integrity than with double-gate structures, par-
ticularly in the corner regions of the channel.

Several double-gate MOSFET structures [60]–[90] have been
proposed to further improve engineering of the channel elec-
trostatics and, in some cases, to provide independent control of

two isolated gates for low-power and, perhaps, mixed-signal
applications. Four typical double-gate structures are described
in the following. First is the tied double-gate, sidewall conduc-
tion structure [60]–[71]. This is a double-gate transistor struc-
ture in which current flows horizontally (parallel to the plane of
the substrate) between the source and drain along opposite ver-
tical channel surfaces. The width of the vertical silicon fin is
narrow (smaller than the channel length) to provide adequate
control of short-channel effects. A lithographically defined gate
straddles the fin, forming self-aligned, electrically connected
gate electrodes along the sidewalls of the fin. The principal
advantage with this structure is the planar bulk-like layout and
process. In fact, this structure can be implemented on bulk Si
substrates [44]. The major challenge is with fabrication of thin
fins that need to be a fraction (one third to one half) of the gate
length, thus requiring sublithographic techniques. 
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Table 1(b). Multiple-gate Nonclassical CMOS Technologies.

Multiple Gate MOSFETs  

N-Gate (N > 2) Double-gate 

Device

Concept Tied gates (number Tied gates, side-wall Tied gates planar Independently Vertical conduction
of channels >2) conduction conduction switched gates,

planar conduction

Application/Driver HP, LOP, and HP, LOP, and HP, LOP, and LOP and LSTP HP, LOP, and LSTP 
LSTP CMOS [2] LSTP CMOS [2] LSTP CMOS [2] CMOS [2] CMOS [2]

Advantages • Higher drive current • Higher drive current • Higher drive current • Improved short • Potential for 3D
• 2× thicker fin allowed • Improved • Improved subthreshold channel effect integration

subthreshold slope slope
• Improved short • Improved short channel 

channel effect effect

Particular Strength • Thicker Si body • Relatively easy • Process compatible with • Electrically (statically • Lithography 
possible process integration bulk and on bulk wafers or dynamically) independent Lg

• Very good control of adjustable threshold
silicon film thickness voltage

Potential weakness • Limited device width • Fin thickness less • Width limited to <1 µm • Difficult integration • Junction profiling 
• Corner effect than the gate length • Back-gate capacitance difficult

• Fin shape and aspect • Degraded subthreshold • Process integration
ratio slope difficult 

• Parasitic capacitance
• Single-gate length

Scaling Issues • Sub-lithographic fin • Sub-lithographic fin • Bottom gate larger • Gate alignment • Si vertical channel 
thickness required thickness required than top gate film thickness 

Design Challenges • Fin width discretization • Fin width discretization • Modified layout • New device layout • New device layout

Gain/Loss in Layout • No difference • No difference • No difference • No difference • Up to 30% gain in 
compared to Bulk layout density 

Advantage in Ion/Ioff • Improved by 20–30% • Improved by 20–30% • Improved by 20–30% • Potential for • Improved by 20–30%
compared to Bulk (from MASTAR (from MASTAR (from MASTAR improvement (from MASTAR 

assuming Eeff/2 assuming Eeff/2 assuming Eeff/2 assuming Eeff/2 and
and S = 65 V/decade) and S = 65 V/decade) and S = 65 V/decade) S = 65 V/decade)

Advantage in CV/I • Lowered by 15–20% • Lowered by 15–20% • Lowered by 15–20% • Potential for • Lowered by 15–20%
compared to Bulk (from MASTAR (from MASTAR (from MASTAR improvement (from MASTAR 

assuming Eeff/2 and assuming Eeff/2 and assuming Eeff/2 and assuming Eeff/2 and 
S = 65 V/decade) S = 65 V/decade) S = 65 V/decade) S = 65 V/decade)

Analog Suitability • Potential for • Potential for • Potential for • Potential for • Potential for 
Gm/Gd advantage improvement improvement improvement improvement improvement
compared to Bulk

Lg
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The second structure is the tied double-gate planar FET
[72]–[78]. In this structure, current flows horizontally (paral-
lel to the plane of the substrate) between the source and drain
along opposite horizontal channel surfaces. The top and bot-
tom gate electrodes are deposited in the same step and are
defined lithographically. They may or may not be self-aligned
to each other, and are electrically connected to one another.
The source/drain regions are typically self-aligned to the top
gate electrode. The principal advantages of this structure
reside in the potential simplicity of the process (closest to
bulk planar process) and in the compactness of the layout
(same as for bulk planar) as well as in its compatibility with
bulk layout (no need for redesigning libraries). It is also
important that the channel thickness is determined by epi-
taxy, rather than etching, and, thus, is very well controlled.
The challenge resides in the doping of the poly in the bottom
gate (shadowed by the channel), but this problem disappears

automatically when switching to a metal-like gate electrode.
Another major challenge is in the fabrication process, particu-
larly for those structures requiring alignment of the top and
bottom gate electrodes.

The third structure is the independently switched double-
gate (ground-plane) FET [79]–[84]. This structure is similar
to the tied double-gate planar FET, except that the top and
bottom gate electrodes are electrically isolated to provide for
independent biasing of the two gates. The top gate is typically
used to switch the transistor on and off, while the bottom gate
is used for dynamic (or static) Vt adjustment. The principal
advantage is in the very low Ioff this structure offers. The dis-
advantage is in rather poor subthreshold behavior and in the
relaxed layout. An independently switched double-gate tran-
sistor can also be implemented in a vertical structure by dis-
connecting the gates of the double-gate, sidewall conduction
structure by chemical mechanical polishing [80].
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2. Impact of the technology boosters on HP, LOP, and LSTP CMOS roadmaps in terms of Ion : Ioff ratio.
MASTAR calculation with translation of technology boosters according to Table 2.

(b)

300
1

10

LoP22

LoP32

LoP45

LoP65

LoP90

LoP100

100

500 700 900

Low Operation Power

ITRS 2003 Requirements

1100 1300 1500

+M
et

. J
un

c.

+Q
. B

all
ist

ic

+U
TB D

G

+M
et

.G

+U
TB S

G

+S
tra

in

Bulk

Io
ff,

 n
A

/µ
m

Ion, µA/µm

0.01

0.1 LSTP22
LSTP32

LSTP45

LSTP65

LSTP90
LSTP100

1
Low Standby Power

ITRS 2003 Requirements

+M
et

. J
un

c.

+Q
. B

all
ist

ic

+U
TB D

G

+M
et

.G

+U
TB S

G

+S
tra

in

Bulk

Io
ff,

 n
A

/µ
m

Ion, µA/µm

(c)

300100 500 700 900 1100 1300 1500

500
10

100

HP22

HP32

HP45

HP65

HP90

HP100

1000

1000 1500 2000

High Performance

ITRS 2003 Requirements

2500 3000

Bulk

Io
ff,

 n
A

/µ
m

Ion, µA/µm

(a)

+U
TB S

G

+Q
. B

all
ist

ic

+U
TB D

G

+M
et

.G

+M
et

. J
un

c.

+S
tra

in



The fourth structure is the “vertical conduction” transistor
[85]–[92]. In this case, current flows between the source and
drain in the vertical direction (orthogonal to the plane of the
substrate) along two or more vertical channel surfaces. The
gate length, hence the channel length, is defined by the thick-
ness of the single deposited gate layer, rather than by a litho-
graphic step. The gate electrodes are electrically connected,
and are vertically self-aligned with each other and the diffused
source/drain extension regions. The principal advantage with
this structure is that the channel length is defined by epitaxy
rather than by lithography (possibility of very short and well-
controlled channels). The disadvantage is this structure
requires a challenging process and the layout is different from
that for bulk transistors.

AN EMERGING NONCLASSICAL CMOS TECHNOLOGY
ROADMAP SCENARIO

As investments relative to the majority of the nonclassical CMOS
structures presented previously may be very large, it would be
quite helpful to assess the gain in performance they promise.
This knowledge will likely contribute to the technical justifica-
tion and validity of the strategic R&D decisions that will be
required to develop and implement one or more of these
options. For many reasons, this is a very difficult task. First, the
properties of new materials may provide some surprises. For one
example, knowledge of these material properties is often based
on isolated large-volume samples, whereas, in CMOS, applica-
tions of very thin and low-volume layers are most common. Sec-
ond, integration of these materials into a CMOS process may
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3. Impact of the technology boosters on HP, LOP, and LSTP CMOS roadmaps in terms of device intrinsic speed (f=1/(CV/I)).
MASTAR calculation with translation of technology boosters according to Table 2.
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reveal undesirable interactions and place these materials under
mechanical stress or lead to their inter-diffusion, which may
alter their properties. Third, the physics of new device structures
is not always completely understood. Lastly, even the validity of
numerical simulation results and tools are subject to debate,
sometimes leading to large discrepancies, depending on the
choice of tools, models, and parameters. Frequently, a new
structure or material gives mediocre results from first attempts
at integration, thus precluding the possibility of calibration of
simulation tools and of experimental verification of predictions.
Years of difficult R&D efforts are sometimes necessary to prove
the real value of a technological innovation.

Given the strategic importance of this task, an example of
one possible emerging device architecture roadmap scenario is
offered and discussed. Considering the precautions and uncer-
tainties previously discussed, qualitative guidelines and relative
estimations are sought rather than quantitative accuracy.

The methodology employed for this task consists of using
simple and widely recognized analytical expressions describ-
ing the conventional planar MOSFET physics. A set of equa-
tions (MASTAR) [93]–[94] served as a backup to an Excel
spreadsheet used for the development of the logic technology
requirements tables in the “Process Integration, Devices and
Structures” (PIDS) chapter of the 2003 ITRS [1]. [The MAS-
TAR executable code file along with the User’s Guide are
available as part of the ITRS 2003 background documentation
via the metalink located in the text of the ITRS 2003 online

documentation (at the end of the
Nonclassical CMOS section of the
Emerging Research Devices Chapter),
or on request from thomas.skotnicki
@st.com or frederic.boeuf@st.com.]
The main equations have been aligned
and calibrated between both tools so
as to ensure very close agreement for
all three PIDS ITRS technology tables
(HP, LOP, and LSTP) [1]. The
methodology used in the spreadsheet
model to assemble the PIDS technolo-
gy requirements tables consists in sat-
isfying the intrinsic speed (CV/I )–1

improvement rate (17% per year) by
requiring the necessary values of Ion

(transistor “on”-current) but without
linking these requirements to a given
technological realization. Nonethe-
less, the required current I resulting
from the (CV/I )–1 is matched with
the Ion value resulting from the
spreadsheet model (very close to MAS-
TAR) in which some parameters are
boosted to account for new materials
and novel device structures in an
implicit way (without making any
direct link between those two). Such
an approach is believed to help the

reliability of predictions. The values of the boosters were
agreed between the ITRS PIDS and Emerging Research
Devices (ERD) working groups, but their nature was left to be
established through the more in-depth analysis carried out by
the ERD group. In contrast, the following analysis is aimed at
finding this link and at assessing the magnitude of improve-
ment of the entries presented in the nonclassical CMOS Table
1(a) and (b).

In order to do so, a table of modifications was established
titled “Technology Performance Boosters,” given in Table 2.
These modifications used in the MASTAR equations allow
rough estimations of the performance gains in terms of Ion,
C gate, and Ioff. Therefore, in addition to the precautions due
to new materials and structures, one needs to be aware that
the employed methodology cannot give more than a first-
order estimate. The effect of the technology performance
boosters is discussed on electrostatic integrity of the device,
on the Ion–Ioff ratio, and on the (CV/I )–1.

Sustaining the Electrostatic Integrity  of Ultra-Scaled CMOS
The electrostatic integrity (EI) of a device reflects its resis-
tance to parasitic two-dimensional (2-D) effects such as SCE
and drain-induced barrier lowering (DIBL). SCE is defined as
the difference in threshold voltage between long-channel and
short-channel FETs measured using small Vds. DIBL is defined
as the difference in Vt measured for short-channel FETs using
a small and a nominal value for Vds.
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Table 2. Technology Performance Boosters.

Technology Performance Boosters

Translation Translation Translation MASTAR
Nature for Ion for Cgate for Ioff Default Value

Strained-Si, Ge, etc. µeff × Bmob NA NA Strained-Si, 
Bmob = 2

UTB Eeff × Bfield NA S = 75 mV/decade Bfield = 0.5
(Single Gate) and d × Bd and Xj = Tdep = Tsi Bd = 0.5

Metal Gate/High-κ Tox el − Bgate Tox el − Bgate Tox el − Bgate Bgate =
Gate Dielectric 4A NMOS

UTB Eeff × Bfield NA S = 65 mV/decade Bfield = 0.5
(Double Gate) and d × Bd and Xj = Tdep = Tsi/2 Bd = 0

Ballistic Vsat × (Bball) NA NA Bball = 1.3

Reduced Gate Parasitic NA Cfringe × Bfring NA Bfring = 0.5
Capacitance (Fringing 
and/or Overlap)

Metallic S/D Junction Rsd × Bjunc NA NA Bjunc = 0.5

The boosters used in Table 2 are defined as follows: 
Bmob—the effective mobility (µeff) improvement factor (long channel mobility) used for example to account
for strained-Si channel material.
Bfield— the effective field (Eeff) reduction factor used to account for lower effective field (and thus higher
mobility) in UTB devices.
Bgate—the reduction in the effective electrical oxide thickness in inversion (Tox el) accounting for cancella-
tion of the poly-Si gate depletion effect and thus used to account for a metallic gate.
Bd—the body effect coefficient (d) reduction factor used to account for smaller d in UTB devices.
Bball—the saturation velocity (Vsat) effective improvement factor used to account (artificially) for (quasi-)
ballistic transport.
Bfring—the fringing capacitance (Cfring) reduction factor used to account for reduced fringing capacitance.
Bjunc—the series resistance (Rsd) reduction factor used for example to account for metallic (Schottky)
junctions.



A good EI means a one-dimensional (1-D) potential distri-
bution in a device (as in the long-channel case), whereas poor
EI means a 2-D potential distribution that results in the 2-D
parasitic effects. A simple relationship between SCE and DIBL
on one hand and EI on the other has been established, as fol-
lows [94]–[95]:

SCE ≈ 2.0 × �d × EI

DIBL ≈ 2.5 × Vds × EI,

where �d is the source-to-channel junction built-in voltage,
Vds is the drain-to-source bias, and EI is given by:

EI ≡
(

1 +
x 2

j

L2
el

)
Tox el

Lel

Tdep

Lel
.

In this expression, x j denotes the junction extension depth,
Lel denotes the electrical channel length (junction-to-junction
distance), Tox el denotes the effective electrical oxide thickness
in inversion (equal to the sum of the equivalent oxide thick-
ness of the gate dielectric, the poly-Si gate depletion depth,
and the so-called “dark space”), and Tdep denotes the depletion
depth in the channel. (“Dark space” is the distance the inver-
sion charge layer peak is set back in the channel from the
SiO2/Si interface due to quantization of the energy levels in
the channel quantum well.)

The strength of nonclassical CMOS structures, in particular
of UTB devices, is clearly shown by this expression when apply-
ing the translations of parameters relevant to UTB devices
(refer to Table 2). Replacing x j and Tdep by TSi (UTB single
gate) or TSi/2 (UTB double gate) permits a considerable reduc-
tion in the x j/Lel and Tdep/Lel ratios, with the condition that
silicon films of TSi � x j , Tdep are available. The key question
therefore is the extent to which body or channel thickness in
advanced MOSFETs must be thinned to sustain good EI.

Figure 1 compares the EI between bulk planar and double-
gate devices throughout the span of nodes for the 2003 ITRS. It
is encouraging to see that the TSi scaling, although very aggres-
sive (4- and 5-nm Si films are required at the end of the
roadmap for HP, and LOP/LSTP, respectively), has the potential
to scale CMOS to the end of the roadmap with the SCE and
DIBL at the same levels as the 90-nm node technologies. [EI ≤
10% (meaning DIBL of < 25% Vds) is assumed as the acceptable
range as represented as a yellow region in Figure 1.] Note that
the EI of planar bulk or classical devices is outside the allowed
zone at the 100-nm node for HP, near the 65-nm node for LOP,
and between the 90- and 65-nm nodes for LSTP products.

Sustaining the Ion – Ioff Ratio
The technological maturity of some performance boosters is
higher than that of others. For example, strained-silicon chan-
nel devices have already been announced as being incorporat-
ed into the CMOS 65-nm node, whereas the metallic
source/drain junction concept is in the research phase. With-
out attempting precise predictions on the introduction node

for a given technology performance booster, the following
chronological sequence is suggested as a plausible scenario for
their sequential introduction:

✦ strained-Si channels
✦ UTB single-gate FETs
✦ metallic-gate electrode (together with high-κ dielectric)
✦ UTB double-gate FETs
✦ ballistic or quasi-ballistic transport
✦ reduced fringing (and/or overlap) capacitance
✦ metallic source/drain junction.

Figure 2 shows the evolution of the Ioff –Ion roadmaps
(HP, LOP, and LSTP) [1] due to introduction of the technolo-
gy performance boosters as defined in Table 2, according to
the aforementioned sequence and in a cumulative way. The
planar bulk device is basically sufficient for satisfying the
CMOS (Ion–Ioff) specifications up to 90-nm node for HP and
up to 65-nm node for LOP and LSTP. Beyond these nodes, the
introduction of technology performance boosters becomes
mandatory for meeting the specifications. Exceeding the spec-
ifications appears possible if all boosters considered are coin-
tegrated. It is also to be noted that HP products use the
greatest number of performance boosters (all except the
metallic S/D junctions) to address the entire HP roadmap,
whereas the LSTP roadmap can be satisfied with UTB single
metallic gate devices.

This analysis assumes that the Ioff current is determined by
the maximum allowed source/drain subthreshold leakage cur-
rent. The maximum gate leakage current is related to the max-
imum source/drain leakage current at threshold. For this to be
true, high-κ gate dielectrics need to be introduced in 2006 for
LOP and LSTP and in 2007 for high-performance logic [1].

Boosting the Intrinsic Speed (CV/I )−1

Certain performance boosters may lead to an increase in Ion at
the same rate as an increase in Cgate, thus producing a small
or negligible effect on CV/I (for example, see metallic gate in
Table 2). Others, such as reduced fringing or overlap capaci-
tance, may reduce Cgate without altering Ion. The evolution of
the intrinsic device speed (CV/I )–1 as impacted by the perfor-
mance boosters may thus be somewhat different than the evo-
lution of the Ion–Ioff. Figure 3 shows rough estimates for the
evolution of the intrinsic device speed for the consecutive
CMOS nodes. Up to the 65-nm node the optimized scaling
strategy (basically equal to the ITRS 2001) is sufficient for the
LOP and LSTP products to achieve an annual performance
increase of 17%-per-year. HP products, again, require the
most aggressive use of the performance boosters, such as
requiring strained-Si channels beginning at the 65-nm node.
Beyond this node, a sequential introduction of performance
boosters is mandatory for maintaining the 17% per year per-
formance improvement rate. At the 22 nm-node, fringing
(and/or overlap) capacitance needs to be reduced to meet the
speed requirements of HP and LOP products. However, coin-
tegrating the boosters up to and including the quasiballistic
transport, according to the sequence presented in Table 2, can
satisfy the requirements for LSTP. It is encouraging to see
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that the metallic junction booster is not employed within the
current roadmap, thus leaving a margin for its prolongation
beyond the 22-nm node without any loss in the performance
improvement rate.

SUMMARY AND CONCLUSIONS
Scaling CMOS to and beyond the 22-nm technology node
(requiring a physical gate length of 9-nm or less) will probably
require the introduction of several new material and struc-
tural changes to the MOSFET to sustain performance increas-
es of 17% per year and to manage SCEs. Material changes will
include strained silicon n- and p-channels and a new gate
stack including a high-k dielectric and a metal gate electrode.
Structural changes could include fully depleted UTB SOI sin-
gle-gate MOSFETs, perhaps followed by fully depleted UTB
double-gate structures. Attaining the performance require-
ments for the final node for high performance applications
could further require channels providing quasiballistic carrier
transport, or very low-resistance source/drain contacts provid-
ed by Schottky metal electrodes. The materials and structural
changes actually introduced to advanced process technologies
will depend both on their readiness for manufacture and their
value in improving performance in the ultra-scaled devices.
For example, a high-κ dielectric may be needed by the 65-nm
node to limit gate leakage current for LSTP applications, but a
viable high-κ metal gate technology may not be ready for
manufacture until the 45-nm node. Also, different manufac-
turers may vary the sequence of technology introduction to
manufacturing to suit their particular requirements and man-
ufacturing readiness. One possible sequence of technology
enhancements, proposed in this article, is the following:

✦ strained-Si channels
✦ UTB single-gate MOSFETs
✦ Metallic-gate electrode (probably integrated simultane-

ously with a high-κ dielectric)
✦ UTB double-gateMOSFETs
✦ ballistic or quasiballistic carrier transport
✦ reduced fringing (and/or overlap) capacitance
✦ metallic source/drain junction.

An alternate sequence would introduce strained-Si channels,
followed by new gate stack materials with UTB single-gate
MOSFETs introduced sometime after the new gate stack. For
high-performance applications scaled beyond the 65-nm
node, a sequential introduction of performance boosters is
mandatory for maintaining the 17% per year performance
improvement rate. At the 22-nm node, fringing (and/or over-
lap) capacitance needs to be reduced to meet the speed
requirements of HP and LOP products.

Successful realization of one or more technology nodes
may require the introduction of two or more new process mod-
ules simultaneously to achieve the roadmap projected perfor-
mance. During the past several years, the semiconductor
industry, supported by their research community, has identi-
fied and demonstrated several new options for accomplishing
these demanding objectives, to sustain the historical cadence
of CMOS scaling during and beyond the next ten years.
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