
0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

Average Power

Clock Period [ns]

P
o
w
er
 [
u
W
]

Pave Iave Vdd⋅()
→

:=Frequency
1

2 PulseWidth⋅

→

:=

Iave PartAData
2〈 〉
A:=Vdd 1.1V:=PulseWidth PartAData

0〈 〉
s:=

PartAData READPRN "inverter_delay_fo4_20.txt"():=

Part a:

fmin 235.849 MHz=fmax 1.179GHz=fmin
1

Tmax
:=fmax

1

Tmin
:=

Tmax 4.24 ns=Tmin 0.848ns=

Tmax 2 tp_FO4_100⋅:=Tmin 2 tp_FO4_20⋅:=

Simulation values:

tp_FO4_100 2.12ns:=

tp_FO4_20 0.424ns:=

Delay times:

Problem #1:

NTU 6342 / EE 241 Homework #3

SOLUTIONS

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

Average Current

Clock Period [ns]

C
u
rr
en
t
[u
A
]

200 400 600 800 1000 1200
0

100

200

300

Average Power

Frequency [MHz]

P
o
w
er
 [
u
W
]

Part b:

PartBData READPRN "inverter_delay_fo4_20_vdd.txt"():=

SupplyVoltage PartBData
0〈 〉
V:= tp PartBData

4〈 〉
s:=

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

5

10

Supply Voltage [V]

P
ro
p
ag
at
io
n
 D
el
ay
 [
n
s]

Interpolating the delay-Vdd curve to get the needed Vdd for a given delay:

Vdd_opt

x
n

linterp
tp−

s

SupplyVoltage

V
,

PulseWidth
n

−

s
,

←

n 0 9..∈for

x V⋅

:=

Vdd_opt

1.099

0.841

0.731

0.667

0.631

0.602

0.573

0.559

0.548

0.537

V= PulseWidth

0.424

0.612

0.801

0.989

1.178

1.366

1.555

1.743

1.932

2.12

ns=

VddOptData READPRN "inverter_delay_fo4_20_vdd_opt.txt"():=

Iave_opt VddOptData
4〈 〉
→

A:= tp_opt VddOptData
7〈 〉
s:=

freqopt
1

2 tp_opt⋅

→

:= Pave_opt

x
n

Iave_opt
n

Vdd_opt
n

⋅←

n 0 9..∈for

x

:=

200 400 600 800 1000 1200
0

100

200

300

Scaled Vdd

Vdd = 1.1 V

Frequency [MHz]

P
o
w
er
 [
u
W
]

We can see from the graph that

reducing the supply voltage reduces the

speed to the amount required.

This results in a quadratic reduction in

power as opposed to a linear decrease

with only frequency scaling.

0 1 2 3 4 5
0

100

200

300

Scaled Vdd

Vdd = 1.1 V

Clock Period [ns]

C
u
rr
en
t
[u
A
]

Part c:

BodyBiasData READPRN "inverter_delay_fo4_20_vbb.txt"():=

BodyBias BodyBiasData
0〈 〉
V:= BodyDelay BodyBiasData

3〈 〉
s:=

1 0 1 2 3 4
0

5

10

Body Bias [V]

P
ro
p
ag
at
io
n
 D
el
ay
 [
n
s]

We can see that the inverter propagation

delay decreases as the threshold voltage is

increased (reverse body bias) and increases

when the threshold voltage is decreased

(forward body bias).

From this graph, we can determine the

required body bias needed to achive the

desired propagation delay.

Vbody_opt

x
n

linterp
BodyDelay

s

BodyBias

V
,

PulseWidth
n

s
,

←

n 0 9..∈for

x V⋅

:=

Vbody_opt

-0.062

0.699

1.223

1.596

1.907

2.132

2.358

2.488

2.615

2.741

V= PulseWidth

0.424

0.612

0.801

0.989

1.178

1.366

1.555

1.743

1.932

2.12

ns=

VbbOptData READPRN "inverter_delay_fo4_20_vbb_opt.txt"():=

Vdd 1.1V=
Iave_vbb_opt VbbOptData

4〈 〉
→

A:= tp_vbb_opt VbbOptData
7〈 〉
s:=

freqopt_vbb
1

2 tp_vbb_opt⋅

→

:= Pave_opt_vbb

x
n

Iave_vbb_opt
n

Vdd⋅←

n 0 9..∈for

x

:=

200 400 600 800 1000 1200 1400
0

100

200

300

Scaled Vdd

Vdd = 1.1 V

Scaled Body Bias (constant Vdd)

Frequency [MHz]

P
o
w
er
 [
u
W
]

We can see from this curve that we can

increase the threshold voltage by

varying the substrate bias, slowing

down the transistor.

The increased threshold voltage also

results in decreased leakage current,

thus reducing the overall power.

0 1 2 3 4 5
0

50

100

150

200

250

Scaled Vdd

Vdd = 1.1 V

Scaled Body Bias (constant Vdd)

Clock Period [ns]

C
u
rr
en
t
[u
A
]

Part d:

Forward biasing the transistor bulk:

VddVbbNegData
0

READPRN "inverter_delay_fo4_20_vdd_vbb_neg1.txt"():=

VddVbbNegData
1

READPRN "inverter_delay_fo4_20_vdd_vbb_neg2.txt"():=

VddVbbNegData
2

READPRN "inverter_delay_fo4_20_vdd_vbb_neg3.txt"():=

VddVbbNegData
3

READPRN "inverter_delay_fo4_20_vdd_vbb_neg4.txt"():=

VddVbbNegData
4

READPRN "inverter_delay_fo4_20_vdd_vbb_neg5.txt"():=

VddVbbNegData
5

READPRN "inverter_delay_fo4_20_vdd_vbb_neg6.txt"():=

VddVbbNegData
6

READPRN "inverter_delay_fo4_20_vdd_vbb_neg7.txt"():=

Delaydb_neg

x
n

VddVbbNegData
n() 5
〈 〉

s←

n 0 4..∈for

x

:=

Vbb_db_neg

0

0.15−

0.3−

0.45−

0.6−

0.75−

0.9−

V:=

Vdd_db_neg VddVbbNegData
0() 0
〈 〉

V:=

0.2 0.4 0.6 0.8 1 1.2
0.1

1

10

100

Vbb = 0 V

Vbb = 0.15 V (forward bias)

Vbb = 0.30 V (forward bias)

Vbb = 0.45 V (forward bias)

Vbb = 0.60 V (forward bias)

Supply Voltage [V]

D
el
ay
 [
n
s]

Note that by forward biasing the bulk

of the transistors, the threshold

voltage is reduced, increasing drive

current and therefore speed.

We can use this additional slack to

further reduce the supply voltage, and

consequently the power.

Finding the corresponding Vdd and Vbb pairs for a given operating frequency:

Vdd_body_opt delay()

x
n

linterp

Delaydb_neg
n

−

s

Vdd_db_neg

V
,

delay−

s
,

←

n 0 4..∈for

x V⋅

:=

0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f = 278 MHz

f = 191 MHz

f = 145 MHz

f = 117 MHz

f = 98 MHz

f = 85 MHz

f = 74 MHz

f = 66 MHz

f = 60 MHz

f = 54 MHz

Body Bias (forward bias) [V]

S
u
p
p
ly
 V
o
lt
ag
e
[V
]

Using this data, we can then

simulate the inverter chain and find

the optimal Vdd-Vbb pair for each

frequency point that will result in the

lowest power.

Ptotal

x
n

Psupply
n

Pnbulk
n

+ Ppbulk
n

+()
→

←

n 0 9..∈for

x

:=

Ppbulk

x
n

Vsupply
n

Vsubstrate
n

−()() Iave_pbulk
n

⋅
→

←

n 0 9..∈for

x

:=

Pnbulk

x
n

Vsubstrate
n

Iave_nbulk
n

⋅
→

←

n 0 9..∈for

x

:=Psupply

x
n

Vsupply
n

Iave_inv20
n

⋅()
→

←

n 0 9..∈for

x

:=

Iave_pbulk

x
n

VddVbbNegOptData
n() 6
〈 〉
→

←

n 0 9..∈for

x A⋅

:=Iave_nbulk

x
n

VddVbbNegOptData
n() 5
〈 〉
→

←

n 0 9..∈for

x A⋅

:=

tdelay

x
n

VddVbbNegOptData
n() 9
〈 〉
→

←

n 0 9..∈for

x s⋅

:=Iave_inv20

x
n

VddVbbNegOptData
n() 4
〈 〉
→

←

n 0 9..∈for

x A⋅

:=

Vsubstrate

x
n

VddVbbNegOptData
n() 2
〈 〉

←

n 0 9..∈for

x V⋅

:=Vsupply

x
n

VddVbbNegOptData
n() 1
〈 〉

←

n 0 9..∈for

x V⋅

:=

VddVbbNegOptData
9

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt10.txt"():=

VddVbbNegOptData
8

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt9.txt"():=

VddVbbNegOptData
7

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt8.txt"():=

VddVbbNegOptData
6

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt7.txt"():=

VddVbbNegOptData
5

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt6.txt"():=

VddVbbNegOptData
4

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt5.txt"():=

VddVbbNegOptData
3

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt4.txt"():=

VddVbbNegOptData
2

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt3.txt"():=

VddVbbNegOptData
1

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt2.txt"():=

VddVbbNegOptData
0

READPRN "inverter_delay_fo4_20_vdd_vbb_neg_opt1.txt"():=

0 0.2 0.4 0.6
1

10

100

1 .10
3

1 .10
4

f = 278 MHz

f = 191 MHz

f = 145 MHz

f = 117 MHz

f = 98 MHz

f = 85 MHz

f = 74 MHz

f = 66 MHz

f = 60 MHz

f = 54 MHz

Body Bias (forward bias) [V]

T
o
ta
l
P
o
w
er
 [
u
W
]

Note that as the substrate is forward biased, we

can reduce the supply voltage. We expect the

substrate current to increase with forward bias.

However, as seen from the plot, the power starts

to increase as the S/D junction is biased in the

forward active region.

This can be attributed to the fact that the

substrate current is starts to dominate the overall

power.

Thus we see that the minimum power occurs

when the bulk is forward-biased at around 0.3

volts. This buys enough timing slack to reduce

the supply voltage but still drawing a small

enough current through the S/D junctions.

From these graphs, we can see the turn-on voltage of the S/D junctions:

0 0.2 0.4 0.6
0

5 .10
4

1 .10
5

1.5 .10
5

2 .10
5

2.5 .10
5

f = 278 MHz

f = 191 MHz

f = 145 MHz

f = 117 MHz

f = 98 MHz

f = 85 MHz

f = 74 MHz

f = 66 MHz

f = 60 MHz

f = 54 MHz

Body Bias (forward bias) [V]

N
-B
ia
s
P
o
w
er
 [
n
W
]

0 0.2 0.4 0.6
0

1 .10
6

2 .10
6

3 .10
6

4 .10
6

5 .10
6

f = 278 MHz

f = 191 MHz

f = 145 MHz

f = 117 MHz

f = 98 MHz

f = 85 MHz

f = 74 MHz

f = 66 MHz

f = 60 MHz

f = 54 MHz

Body Bias (forward bias) [V]

P
-B
ia
s
P
o
w
er
 [
n
W
]

Problem #2:

Part a:

The two circuit styles compared in the paper are the standard CMOS inverter circuit and the Charge

Recovery (or Adiabatic) logic. The delay and energy models for each can be expressed as:

ECMOS
1

2
C⋅ Vdd

2
⋅=

DCMOS

C Vdd⋅

I
=

C Vdd⋅

k Vdd Vth−()2⋅

= RCMOS C⋅=

DCR
π

ωd
RCR C⋅+= ECR

1

2
C⋅ ∆V

2
⋅ 1 e

π− α⋅

ωd

−

⋅=

α
RCR

2 L⋅
=

SInce both energy expressions are dependent on the square of the supply voltage (or in the case of CR, a

fraction of the supply voltage), we can use voltage scaling to quadratically reduce the energy.

Part b:

Without considering switching power, CMOS logic dissipates less energy until the voltage is scaled down

to 1V. The point where CR starts to consume less energy has a 10X reduction in frequency and a 150X

reduction in power.

With switching power considered, CMOS logic now dissipates less energy over a wider range. The voltage

crossover point is reduced from 1V to voltages close to the transistor threshold voltage. Thus, with

switching power considered, CR starts to consume less energy when the power is reduced 2500X at a

frequency of 100X the peak.

Part c:

For low power designs with increased computation requirements such as portable phones, computers,

PDAs, and the like, CMOS logic will be the better choice.

However, for ultra-low power, very low performance requirements, such as watches, simple sensors without

much computational requirements, medical and biological implants, and the like, CR logic might be the

logic syle of choice.

