UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

Homework 3 EECS 247
B.E. Boser Due Thursday, October 9, 2003 Fall 2003
B. Murmann

Design an elliptic filter with the following specifications:

f_{pass}	20 MHz
$\dot{f_{stop}}$	35 MHz
r_{pass}	< 0.2 dB
r_{stop}	> 65 dB

- a) What is the required filter order?
- b) Obtain the doubly-terminated, denormalized LC ladder prototype using a table (e.g. the attached copy from Williams) or a synthesis program.
- c) Synthesize a parasitic insensitive Gm-C filter based on the ladder prototype. Note all element values.
 - You may use SPICE G-elements for the transconductors. Add a noise to simulate the noise $(4k_BT/G_m)$. Do not use resistors for any other purpose—synthesize them from transconductors.
- d) Scale the filter elements to obtain a peak gain of unity from the filter input to each integrator output and to achieve a total integrated noise at the output of $100\mu V$ rms integrated from DC to 100MHz. Verify your design with a SPICE AC analysis that you compare to the LC ladder. Show the output of each integrator and indicate the filter output. Note all element values on your filter schematic.
- e) Consider the effect of finite amplifier bandwidth f_u . Using first order pole cancellation, determine the minimum unity gain frequency that meets specifications and explain why some poles are not cancelled.