UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

	Homework 4	EECS 247
B.E. Boser	Due Thursday, October 30, 2003	Fall 2003
B. Murmann		

- 1. An integrator-based filter is designed for ideal pole locations at $p_{ideal} = a_{ideal} + j b_{ideal}$. Now the filter is realized with integrators that have a finite low-frequency gain A_{v0} . Determine the approximate new pole locations in terms of p_{ideal} and A_{v0} . What would be the effect on a (2nd order) bandpass filter with Q=10 if A_{v0} =100?
- 2. Design an SC biquad realization of an elliptic low-pass filter with the following specifications:

\mathbf{f}_{s}	10 MHz
fcorner	1 MHz
fstop	1.5 MHz
ripple	< 0.1 dB
attenuation	> 60 dB

- a) What is the required filter order? Use the bilinear transform to convert a continuous time prototype to a sampled data filter.
- b) Compute and pair the poles and zeros for the biquad realization. There are many solutions.
- c) Realize the biquads (many solutions, differing in element spread and sensitivity). Use 1pF integrating capacitors and amplifiers with openloop gain 10⁶. Scale the components for unity gain in the passband. Verify with Spectre.
- d) Using Spectre, determine the minimum amplifier voltage gain (all amplifiers have the same gain) required that results in less than a 0.12dB ripple in the passband, and at least 55dB rejection in the stopband.