UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

	Midterm Exam	EECS 247 (NTU)
B. Murmann	October 20-24, 2003	FALL 2003

1. (15 points) Synthesize the passive LC ladder filter shown below with active RC differentiators with H(s)=sRC.

a) Draw the circuit diagram of the active filter. Specify all capacitors as a function of the parameters of the ladder prototype (use negative capacitors as needed). Choose all resistors equal R.

b) Scale the filter to double the gain to $V_o(s)/V_i(s)$.

2. (10 points) For the system shown below, what is the minimum sampling frequency f_s that guarantees > 60 dB attenuation of aliasing components in the discrete time signal y(kT), where $T=1/f_s$?. (Assume that unwanted tones can be present in x(t) at any arbitrary frequency outside the desired signal band of 1MHz)

3. (10 points) The output V_{out} of the filter shown below is processed by an ideal sampler operating at the sampling frequency f_s . (e.g. an ideal A/D converter). V_{in} is a sinusoid with amplitude A and frequency f_x =1.25fs. Derive an expression for the amplitude and frequency of the sampled output.

- 4. (5 points) A 10-bit ADC has $DNL(j) = (-1)^j$, where j is the jth code of the converter. Assuming that there are no other error sources (e.g. thermal noise), what is the SNR of this ADC?
- 5. (10 points) Derive an expression for the output $V_o(z)$ of the switched capacitor circuit below as a function of its inputs $V_1(z)$ and $V_2(z)$.

