

































![](_page_8_Figure_1.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

|         | ist ADCs           | n ouvor(m)//) |          | ۰. Fo        |      | FOM  |                    |
|---------|--------------------|---------------|----------|--------------|------|------|--------------------|
| rear pa | aper # lead author | power(mvv)    |          | ) FS<br>1600 |      | FOIM |                    |
| 2002    | 8.1 Choi           | 540           | 6 33dB   | 1300         | 650  | 54   |                    |
| 2001    | 8.2 Geelen         | 300           | 6 36dB   | 000          | 450  | 03   |                    |
| 2001    | 26.2 Sushihara     | 400           | 6 32dB   | 800          | 200  | 20   |                    |
| 2000    | 26.1 Nagarai       | 187           | 6 35 2dB | 700          | 250  | 76   |                    |
| 1999    | 18.5 Tamba         | 400           | 6 35dB   | 500          | 250  | 35   | Figure of Merit:   |
| 1999    | 18.6 Yoon          | 330           | 6 33dB   | 500          | 75   | 10   |                    |
| 2002    | 18.2 Lin           | 0.48          | 6 33dB   | 22           | 11   | 1023 |                    |
| 2002    | 10.3 Sushihara     | 50            | 7 36.7dB | 450          | 225  | 308  | $ENOB \times BW$   |
| 2002    | 10.1 Poulton       | 4600          | 8 38.5dB | 4000         | 2000 | 37   | FOM =              |
| 2000    | 2.5 Ming           | 250           | 8 46dB   | 80           | 20   | 16   | P                  |
| 2002    | 10.4 Jamal         | 234           | 10 57dB  | 120          | 60   | 182  |                    |
| 2001    | 8.3 Park           | 180           | 10 57dB  | 100          | 50   | 197  |                    |
| 1999    | 18.3 Hoogzaad      | 65            | 10 57dB  | 40           | 20   | 228  |                    |
| 2002    | 10.5 Miyazaki      | 16            | 10 54dB  | 30           | 15   | 470  |                    |
| 1999    | 18.2 vanderPloeg   | 195           | 10 58dB  | 25           | 5    | 20   | All Bondwidthe ore |
| 1999    | 18.4 Brandt        | 75            | 10 60dB  | 20           | 10   | 133  | All Danuwiuths are |
| 2002    | 10.6 Kuttner       | 12            | 10 55dB  | 20           | 10   | 468  | in MHz_all FOM     |
| 2000    | 2.3 Singer         | 500           | 12 70dB  | 65           | 32   | 202  |                    |
| 2001    | 8.4 vanderPloeg    | 295           | 12       | 54           | 25   | 0    | are 10^9           |
| 2000    | 2.4 Pan            | 850           | 12 64dB  | 50           | 25   | 47   |                    |
| 2002    | 18.4 Kulhalli      | 30            | 12 68dB  | 21           | 10   | 837  |                    |
| 1999    | 18.1 Erdogan       | 16            | 12 71dB  | 0.125        | 0.05 | 11   |                    |
| 2002    | 18.5 Waltari       | 715           | 13       | 50           | 25   | 0    |                    |
| 2000    | 2.2 Choe           | 800           | 13 66dB  | 40           | 20   | 50   |                    |
| 2000    | 2.1 Moreland       | 1250          | 14 75dB  | 100          | 25   | 112  |                    |
| 2001    | 8.5 Kelly          | 340           | 14 73dB  | 75           | 37.5 | 493  |                    |
| 2001    | 8.6 Yu             | 860           | 14       | 40           |      | 0    |                    |
| 2000    | 2.7 Chen           | 720           | 14 74dB  | 20           | 10   | 70   |                    |

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)