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Overview

• Building behavioral models in stages
• A 5th-order, 1-Bit Σ∆ modulator

– Noise shaping 
– Complex loop filters
– Stability
– Voltage scaling
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Building Models in Stages
• When modeling a complex system like a 5th-order Σ∆

modulator, model development proceeds in stages
– Each stage builds on its predecessor

• The design goal is to detect and eliminate problems 
at the highest possible level of abstraction
– Each successive stage consumes progressively more 

engineering time
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Building Models in Stages
• Rework and reverification of early stage models 

because of problems found in later stages is 
expensive
– Defective silicon is much more expensive

(and often fatal)

• Don’t launch a multistage rework cycle every time 
you find a single bug
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Building Models in Stages

• Our Σ∆ model development proceeds in 
stages:
– Stage 0 gets to the starting line
– Stage 1 develops a practical system built with 

ideal subcircuits
– Stage 2 models key subcircuit nonidealities and 

translates the results into real-world subcircuit 
performance specifications
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Building Models in Stages
• Real-world model development includes a critical 

stage 3:
– Adding elements to earlier stages (hopefully only stage 2) to 

model significant surprises found in silicon

• The previous lecture introduced much of the stage 0 
Σ∆ model and 1-Bit quantization background
– What other steps are needed to arrive at a successful 

design?
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Stage 0
• Collect references

– Important references
– Readable references
– Talk to veterans to find them and sort them

• Understand the readable references
– Build a simple model of what you think you understand
– Start building diagnostic infrastructure
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Stage 0 Models
• You can’t just talk about stage 0 models with 

veterans and look at their stage 0 simulations
– You’ve got to exercise and think with the model until you can 

begin to explain surprises by yourself
– Then, in stage 1, you can ask a veteran more intelligent 

questions

• Stage 0 model code (download code used for last 
lecture) is 20% modulator loop code, 80% 
diagnostics
– This ratio holds for all stages of modeling 
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Stage 1

• In stage 1, we’ll study a model for a practical Σ∆
modulator topology built with ideal blocks

• Stage 1 model focus
– Signal amplitudes
– Stability

• Worst-case inputs
• Unstable systems can’t graduate to stage 2

– Quantization noise shaping 
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Stage 1 Models
Building the infrastructure to generate worst-case inputs 
and analyze model responses is of critical importance in 
stage 1

– You must tap into your organization’s technical wisdom to 
learn what those worst-case real world inputs are

Models can only tell you the right answers if you ask 
them the right questions!
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∆Σ Modulator Filter Design

• Procedure
– Establish requirements
– Design noise-transfer function, NTF
– Determine loop-filter, H
– Synthesize filter
– Evaluate performance, stability

Ref: R. W. Adams and R. Schreier, “Stability Theory for ∆Σ Modulators,” 
in Delta-Sigma Data Converters, S. Norsworthy et al. (eds), IEEE 
Press, 1997, pp. 141-164.
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Modulator Specification
• Example: Audio ADC

– Dynamic range DR 16 Bits
– Signal bandwidth B 20 kHz
– Nyquist frequency fN 44.1 kHz
– Modulator order L 5
– Oversampling ratio M = fs/fN 64
– Sampling frequency fs 2.822 MHz

• The oversampling ratio M chosen based on
– SQNR > 120dB (20dB below thermal noise)
– Experience (e.g.  Figure 4.14 in Adams & Schreier)
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Modulator Block Diagram
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Noise Transfer Function, NTF(z)
% stop-band attenuation ... 
% reduce if design is not stable 

Rstop = 80;                                 
[b,a] = cheby2(L, Rstop, 1/M, 'high');

% normalize (for causality)
b = b/b(1); 
NTF = filt(b, a, 1/fs);

% check stability (mag < 1.5)
[mag] = bode(NTF, pi*fs)

>> mag =  1.32
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Loop-Filter, H(z)
H = inv(NTF) - filt(1, 1, 1/fs);

% check causality … y(1) should be 0
y = impulse(H);
y = y(1)

>> y =  0
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Filter Topology
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Rounded Filter Coefficients

a1=1;
a2=1/2;
a3=1/4;
a4=1/8;
a5=1/8;

k1=1;
k2=1;
k3=1/2;
k4=1/4;
k5=1/8;

b1=1/1024;
b2=1/16-1/64;

Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, “Phase 
Equalization System for a Digital-to-Analog Converter Using Separate Digital 
and Analog Sections”, U.S. Patent 5061925, 1990, figure 3 and table 1.
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5th-Order Noise Shaping
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That’s noise shaping! – let’s look closer…
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5th-Order Noise Shaping
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5th-Order Noise Shaping
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5th-Order Noise Shaping

• The 1Vrms 1-Bit quantization noise is shaped 
to sum to only 82nVrms in the audio band
– That’s over 140dB of dynamic range

• Σ∆ modulators are usually designed so that 
their quantization noise is negligible in the 
frequency band of interest
– Thermal noise sources dominate

• Let’s look at the loop filter transfer function… 
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5th-Order Loop Filter
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5th-Order Loop Filter

Frequency  [kHz]

G
ai

n
 (d

B
) 

or
 P

ha
se

 ( 
°

)

200

100

0

- 100

- 200
0 40302010 50

upward phase jumps imply 
poles just outside the unit circle



EECS 247 Lecture 20:  5th Order Architecture © 2002 B. Boser   23A/D
DSP

5th-Order Loop Filter
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|H(z)| maxima provide
Qnoise minima…
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5th-Order Loop Filter

• The fact that H(z) has poles outside the unit 
circle doesn’t mean that the entire Σ∆
modulator is unstable
– The modulator’s stability depends on its closed

loop poles

• All loop variables ( ∫1, ∫2, ∫3, ∫4, ∫5) have the 
same closed loop poles
– If one is stable, they all are
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Modulator Root-Locus
The nonlinear modulator system operates at some 
effective gain G between points A and B:

H(z)
+

_
vIN dOUT

+1 or -1

A

B
g

vB

vA

G ≡
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Modulator Root-Locus
• G may be a function of both vIN and g
• The modulator closed loop poles are the zeroes of 

the function 1+HG:

• We’ll plot closed loop poles in the z-plane as G varies 
from 0.1 to 10 in equal log steps …

DOUT(z)

VIN(z)
HG/g

1 + HG
=
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Modulator Root-Locus
unit circle
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Modulator Root-Locus
unit circle

start (G=0.1)  unstable
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Modulator Root-Locus
unit circle

stop (G=10)  stable
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Modulator Root-Locus
unit circle

Closed-loop poles move
inside the unit circle for
G > 0.4
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Effective Gain
• If our linearized model is valid (a big if)

– For G > 0.4, the modulator system is stable
– For G < 0.4, it’s unstable

• Presumably, the noise shapes in slides 18 and 23 
were produced by a stable system
– We’ll evaluate G for 5kHz and 20kHz sinusoidal inputs 

varying in amplitude from –30dBV to +5dBV…
– While we’re at it, we’ll capture minimum and maximum signal 

levels throughout the modulator 
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Sinewave Input Effective Gain
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Effective Gain
• As the input amplitude increases, the signal at the 

quantizer input grows, and G falls

• Just over 1Vrms, G falls to below 0.4, and
– The system becomes unstable
– Loop variables grow without bound 

(opamps in a real analog circuit will just run up to power 
supply rails)

– Noise shaping is lost

EECS 247 Lecture 20:  5th Order Architecture © 2002 B. Boser   34A/D
DSP

Effective Gain
• It’s highly unlikely that audio sinewaves provide the 

worst case inputs for stability
– To evaluate any model, you’ve got to know what the worst 

case inputs are

• Let’s look at inputs that aren’t “dc-like” and aren’t 
sinusoidal (square waves)…
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300kHz Input Effective Gain
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Modulator Stability
• The sensitivity of Σ∆ modulators to high frequency 

square wave inputs was first discovered on 
breadboards
– No one thought to provide such inputs to early modulator 

simulations

• Worst-case square wave frequencies are roughly 
equal to the frequency of the highest Q pole in the 
noise shape
– A key job of the antialiasing filters used in front of Σ∆

modulators is to reduce out-of-band signals to safe levels
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Modulator Stability
• 5000 point simulations such as those in the previous 

slides don’t guarantee stability
– Sometimes millions of time points are required before an 

unstable modulator blows up
– When it explodes, G falls very quickly

• Square wave tolerance is a fast, effective basis for 
comparing the relative stability of different modulator 
topologies
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Voltage Scaling
• Given that the modulator is stable for 1Vrms inputs, 

let’s move on to look at the state variable voltages 
under various input conditions
– Loop state variables and the filter output are labeled green 

on the next slide

• Peak signal levels and signal standard deviations are 
easy to obtain in MATLAB
– We’ll examine voltages for a 5kHz sinusoidal input …
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5th-Order Loop Filter
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5kHz Input Loop Voltages
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5th-Order Loop Filter
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Only the sign of Q matters,
so we can make k1 whatever we want
without changing the 1-Bit data at all

EECS 247 Lecture 20:  5th Order Architecture © 2002 B. Boser   42A/D
DSP

5kHz Input Loop Voltages
• If we scale k1 by 0.1,

– All state variables and Q scale by 0.1
– But since the comparator output is fixed, G increases 10X

• The change in k1 doesn’t change the shape of the 
root locus, either
– The effective gain for each root position is increased 10X
– G > 4 is now required for stability
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5kHz, k1=0.1 Effective Gain
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k1=0.1 Loop Voltages
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Loop Voltage Scaling

• Before we scale k1 down any lower, we note 
that ∫3, ∫4, and ∫5 have substantially larger 
swings than ∫1 and ∫2

• Just about any filter topology allows scaling 
tricks which change internal state variable 
amplitudes without changing the filter output
– The next slide shows an example
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Scaling Example
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Input Range Scaling
• Slides 40 and 44 indicate inadequate stability 

margins for 1Vrms sinewave inputs

• Scaling the DAC output levels adjusts the modulator 
input range
– If VIN and the DAC outputs are scaled up by the same factor 

g, the 1-Bit data is completely unchanged
– Of course, increasing the range also increases the 

quantization noise … the dynamic range and peak SQNR 
stay the same!

– If the DAC output levels are increased and the analog full 
scale is held constant, the stability margin improves … at the 
expense of reduced SQNR 
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Input Range Scaling
Increasing the DAC levels by g reduces the analog to 
digital conversion gain:

H(z)
+

_
vIN dOUT

+1 or -1

g

DOUT(z)

VIN(z)
≈

1

g

increasing vIN, g by the same factor leaves 1-Bit data unchanged

=
H

1+gH
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Stage 1 Modulator
• We’ll increase g from 2.5 to 3.0 to provide a 2dB 

increase in stability margin for a 1Vrms full scale 
input

• We’ll also implement the loop voltage scaling 
changes suggested in slide 45

• The result is our first-pass stage 1 modulator, and its 
performance appears on the following slides …
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Modulator Effective Gain
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Loop Voltages
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