
Synchronization and Chip Multiprocessing (CMP)
Hermoso, Sheryl M.

CS 252 Midterm Paper
August 21, 2006

I. INTRODUCTION

Processor chips are becoming smaller and smaller.
Personal computing needs are ever increasing while the
silicon’s physical and thermal limitations are bound to be
reached. With today’s transistor technology that limits the
ability of single processors, manufacturers tend to switch on
multiprocessors as a solution.

This new revolution in computer architecture
technology, which we now call Chip Multiprocessing (CMP)
or simply multicore, is a combination of two or more
independent processors into a single integrated circuit (IC)
package. It allows the device to exhibit some sort of
parallelism - thread-level parallelism (TLP) and/or
instruction level parallelism (ILP) - while enjoying fewer
components, lower cost, and less interconnection overheads.

Multicore has its pros and cons. Although promising
and advantageous, having multiple cores in a single chip
presents several problems, cache coherencies and memory
synchronization are among them. However, these concerns
were similar to those addressed by multiprocessors and
parallel processors since the late 1980s.

Multiprocessing is not a new technology. Multiple
processors communicate by way of sharing data structures. A
standard problem in a system running multiple processes is
how to control accesses to the shared data to ensure correct
behavior and data consistency. Such can be addressed with
synchronization, the coordination of simultaneous threads
and processes accessing the same memory address space.
Synchronization mechanisms, although mostly rely on user-
level software algorithms, also require support by hardware
primitives.

II. CLASSIFICATION OF SYNCHRONIZATION

A general classification of synchronization is either
lock-based or lock-free.

Lock-based algorithm is the traditional way to
synchronize multiple processes or threads by using locks.
Locks, barriers, and mutual exclusion came to be tagged as
lock-based since they need to “lock” a shared variable to
exclusively access and modify the data. Another process that
wishes to use the variable stays in busy-wait or spinning
mode, repeatedly checking to see if the lock has become
available, and competes for lock ownership with other
processes once the variable becomes free. The
implementation of this technique is through hardware
primitives such as mutexes or semaphores to ensure that no
two processes are concurrently accessed, thus preventing the

corruption of the shared memory. Some downsides to this
method include deadlocks, starvation, and priority inversion.
Deadlock occurs when several processes may acquire the
semaphore causing both to wait forever for the other
semaphore to be released. Starvation is insufficiency in
resources to complete a process, and priority inversion occurs
when a higher priority thread waits for the lower-priority
thread. Of course, the process in busy-wait is rendered
useless because it only wastes clock cycles in idle state.

Lock-free algorithms aim to solve this problem. Lock-
free and wait-free algorithms are designed to allow multiple
threads to read and write shared data concurrently without
corrupting it, thus the term “lock-free.” Wait-free" refers to
the fact that a thread can complete any operation in a finite
number of steps, regardless of the actions of other threads
[2].

Hardware synchronization mechanisms such as atomic
instructions should be supported by the CPU architecture.
Lock-based Test-and-Set, Fetch-and-Increment, Test-and-
Test-and-Set are some of the popular ones. Lock-free
primitives include Compare-and-Swap and Load-
Linked/Store-Conditional instructions. Compare-and-Swap
(CAS) CPU instructions compare the contents of a memory
location to a given value then modify the contents of that
location if they are the same.

III. PAPERS

Several papers have proposed solutions to
synchronization for shared memory multiprocessor systems.
Crumney and Scott [1] in 1991 collected some of these
existing algorithms and compared them with a new
technique. The analysis implemented two popular busy-wait
synchronization constructs, namely spin locks and barriers.
Spin locks provide a means for achieving mutual exclusion
ensuring that only one processor can access a particular
shared data structure at a time. Barriers provide a means of
ensuring that no processes advance beyond a particular point
in a computation until all have arrived at that point.

The paper provided an analytical comparison of five
spin lock implementations, simple test-and-set lock, ticket
lock, two array-based queuing lock, against the list-based
queuing lock and evaluated them based on scalability and
induced network load, one processor latency, space
requirements, fairness sensitivity to preemption, and
implementability with given atomic operations. Five different
barriers were also compared: four previous papers, the
centralized barrier, software combining tree barrier,
dissemination barrier, tournament barrier, and the author’s

own design called tree-based barrier. Evaluation criteria
include length of critical path, total number of network
transactions, space requirements, and implementability with
given atomic operations. All of the implementations were
tested using the BBN Butterfly, a distributed shared memory
multiprocessor, and the Sequent Symmetry Model B, a cache
coherent, shared-bus multiprocessor. The network latency
increase for busy-wait and barrier schemes in the Butterfly
with 60 processors are shown in Table 1 and Table 2.

The algorithms does not require special-purpose
mechanisms. Commonly-available hardware atomic
primitives were enough to support synchronization. Among
these general purpose primitives, shared memory machines
would benefit most with fetch and increment operations,
including compare-and-swap. Based on architecture, the
paper recommended a compatible algorithm. The results are
found in Table 3.

Table 1 Increase in Network Latency on the Butterfly caused by 60 Processors
Competing for a Busy-Wait Lock [1]

Barrier Local
Polling

Network
Polling

Tree 10% 124%
Dissemination 18% 117%

Table 2 Network Latency Increase using Local and Network Polling Strategies [1]

Lock or Barrier Algorithm Recommended for...

MCS Lock Hardware provides Fetch and
Store

Ticket Lock w/ Backoff No fetch and store

Simple Lock w/ Exponential
Backoff

Process will be preempted while
spinning

Centralized Counter barrier Broadcast-based cache-coherent
multiprocesses

Dissemination barrier or tree-
based barrier

Multiprocessor without cache
coherence

Table 3 Recommended Lock and Barrier for Different Architectures [1]

However, a breakthrough in synchronizing techniques
was the introduction of lock-free and wait-free algorithms by
Maurice Herlihy [2]. He published a series of papers focusing
on lock-free objects. He defined lock-free as a process which
does not require mutual exclusion.

His paper [2] on wait-free synchronization in 1993
presents a proof that atomic registers have few applications in
wait-free implementations. The contribution of this paper is
the statement that it is impossible to construct wait free
implementation of (1) common data types such as set,
queues, stacks, priority queues, or lists, (2) most classical
synchronization primitives, such as test and set, compare and
swap, and fetch and add. It presents a model of computation
for simple universal objects from which a wait-free
implementation can be constructed for any sequential object.
It suggests the use of compare and swap primitives for
universal construction over classical synchronization
primitives (test and set, fetch and add), which they
commented are as weak as message-passing primitives.

Transactional memory [3] shows its advantages over
locks to address energy consumption issues. However this
advantage is dependent on the architecture, contention level
and the conflict policy being implemented in certain
architectures. Transactional memory was proposed by
Herlihy in an earlier paper. There have been rich studies on
both software and hardware implementations since then. A
transaction is defined by the scope of a lock. Each transaction
is executed speculatively by a single thread without acquiring
a lock. The execution is optimistic, and if it completes
without conflict, it will commit and no further action is
required. Otherwise, if conflicts were detected during the
execution, the transaction will abort, its effects will be
discarded and will be required to roll back and re-issued.
Hardware transactional memory proved to be superior over
software transactional memory.

Reference [3] used the SPLASH-2 benchmark suite to
compare the hardware transactional memory and a synthetic
microbenchmark for high contention operations. The results
in Fig. 1 shows a reduction in energy consumption at high
contention, which is attributed to the reduced number of
cache and memory accesses.

Figure 1 Energy Consumption of Microbenchmarks Using Locks vs. Transactions [3]

Busy Wait Lock Increase in Network
Latency Measured

From
Lock Node Idle Node

Test and set 1420% 96%
Test and set w/ Linear
Backoff

882% 67%

Test and set w/ Exp.
Backoff

32% 4%

Ticket 992% 97%
Ticket w/ prop. backoff 53% 8%
Anderson 75% 67%
MCS 4% 2%

Table 4 Energy Consumption per Cache/Memory Access [3]

Energy estimates for different memory hierarchy are
shown in Table 4. The shared memory energy was computed
as the sum of the I/O processor of the Front Side bus, the I/O
of the SDRAM pins, and the actual SDRAM access. The
paper shows that a transaction is advantageous over locks
both in performance and energy for rare conflicts. However,
as conflicts rise, transactions may not be beneficial due to the
cost of rolling back. They proposed to serialize transactions
following a high-conflict region of execution.[3]

The advantages of transactional memory over mutual
exclusion have been investigated for different architectures.
Specifically interesting are its effects on large-scale shared-
memory multiprocessor units and the hardware support best
suited for each system.

Another paper [4] which focused on hardware
synchronization solutions studied different atomic primitives
for distributed shared memory multiprocessors (DSM). It
considered three general purpose hardware primitives, fetch-
and-increment, compare-and-swap, load-linked/store-
conditional on directory-based cache-coherent DSM
multiprocessors. These primitives are largely used for lock-
free software algorithms such as introduced by Herlihy.
Having seen that generic primitives provide greater
concurrency, efficiency and fault-tolerance, the purpose of
the paper was to find the best atomic primitive to use for
future DSM multiprocessors. Three fetch-and-increment,
five CAS, and three LL/SC, were categorized according to
coherence policy as INValidate, UPDate, and UNCached.
The result achieved is highly in favor of compare-and-swap
instructions, which the researchers recommended for cache
controllers with write-invalidate coherence policy. Fetch-
and-add was found to be efficient for lock-free counters, and
is recommended for uncached memory.

Several more papers that followed focused on both
software and hardware synchronization techniques. Topics
range from distributed data structure that implements
concurrent, lock-free, low-contention read-modify-write
registers to nonblocking queues using FIFO buffers that can
work both on symmetric and unsymmetrical processors.

IV. INDUSTRY AND ACADEMIC TRENDS

Emerging architectures such as Simultaneous
Multithreading (SMT) and Chip Multiprocessing (CMP) are
bringing multiprocessing to the desktop. Multiple cores
communicate directly by way of shared hardware cache to

increase concurrency. With SMT and CMP at play, shared-
memory parallel processing has once again become an
important topic of investigation both for the industry and the
academe. The problem with synchronization one decade ago
is shifting to the level of multicores. There is in fact a
growing community that study hardware architectures
employing these techniques. Its major effects on
programming languages, compilers and operating systems,
present problems and thus opportunities for more intensive
researches in the software side.

Chip manufacturers have started shipping multicore
processors. Industry efforts to synchronize data focuses on
locks and semaphores. IBM Power 4 [6], the first of its kind,
included two noncacheable units to handle cache and
synchronization operations. It used lock and unlock functions
to execute synchronization instructions, such as sync and
lwsynch, provided in the PowerPC Instruction Set
Architecture. In software, Win32 and POSIX API provide
both blocking and non-blocking thread synchronization
primitives. Reference [7] however pointed out that although
lock-free approaches are promising, this area is still in
theoretical and experimental stages, and are left in the realm
of university studies.

Academic efforts to address the synchronization issues
include an abundance of talks on transactional memory and
its applications on CMPs. One example is the keynote speech
by Maurice Herlihy in the recent ACM PODC 06 held July
22-26, 2006 [8].

Wells [5] hypothesized that spin-lock is an attractive
mutex mechanism for CMPs. Using the SPARC v9 ISA, they
then proved this as sufficient for single-chip CMPs as
compared to queue-based locks, being simpler to implement.
An improved cache-to-cache transfer is observed by
increasing the number of cores per chip using different
benchmarks (see Fig. 2). To further improve performance of
spin-locks, the paper also proposed an on-chip lock arbiter
that will convert spin-locks to queue-based locks and assign
priority based on the locality of requesting processor.

Figure 2 Cache to Cache Transfers Resulting from Locks [5]

Machine Width 4-wide fetch, issue, commit
L1 DCache 8KB 4-way; 32B line; 3 cycle

latency
0.47 nJ

Transactional
Cache

64-entry fully associative 0.12 nJ

L2 Cache 128KB 4-way; 32B line; 10
cycle latency

0.9 nJ

Memory 256MB; 200-cycle latency;
64-bit bus

33 nJ

V. INSIGHTS AND CONTRIBUTION

Although little is known on the advances of lock-free
algorithms in chip multiprocessing, efforts on the academic
side are being put up to fill in the gap. Transactional memory
and lock-free objects have been found beneficial for shared
memory multiprocessors in the past. It would perhaps
provide a parallel impact with CMPs today, especially when
it is backed up with the multithreading technology.

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors, ACM Trans. on
Computer Systems, 9(1), February 1991.

[2] M.P. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124--149, January 1991.
(Preliminary version PODC'88.)

[3] Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. Energy-Aware
Microprocessor Synchronization: Transactional Memory vs. Locks.
http://www.lems.brown.edu/~tali/publications/ moreshet_wmpi06.pdf

[4] Maged M. Michael and Michael L. Scott. Implementation of atomic
primitives on distributed shared memory multiprocessors. In
Proceedings of the First International Symposium on High-Performance
Computer Architecture, pages 222--231, January 1995.

[5] Philip Wells. Investigating CMP Synchronization Mechanisms.
http://www.cs.wisc.edu/~david/courses/cs838/projects/

[6] Bill Hay and Gary Hook. Power 4 and Shared Memory Synchronisation.
http://www128.ibm.com/developerworks/eserver/articles/power4_mem.
html

[7] Walsh, George. Multiple Approaches to Multithreaded Applications.
http://www.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/implementation/151201.htm?page=1

[8] Herlihy, Maurice. The Art of Multiprocessor Programming. Annual
ACM Symposium on Principles of Distributed Computing,
http://delivery.acm.org/10.1145/1150000/1146382/p1-
herlihy.pdf?key1=1146382&key2=4898216511&coll=ACM&dl=ACM
&CFID=15151515&CFTOKEN=6184618#search=%22chip%20multipr
ocessing%20herlihy%22

http://delivery.acm.org/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/implementation/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/
http://www128.ibm.com/developerworks/eserver/articles/power4_mem.html
http://www128.ibm.com/developerworks/eserver/articles/power4_mem.html
http://www.cs.wisc.edu/~david/courses/cs838/projects/
http://www.cs.brown.edu/people/mph/Herlihy91/p124-herlihy.pdf

