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I. INTRODUCTION

Processor  chips  are  becoming  smaller  and  smaller. 
Personal  computing  needs  are  ever  increasing  while  the 
silicon’s  physical  and  thermal  limitations  are  bound to  be 
reached.  With  today’s  transistor  technology that  limits  the 
ability of single processors, manufacturers tend to switch on 
multiprocessors as a solution.

This  new  revolution  in  computer  architecture 
technology, which we now call Chip Multiprocessing (CMP) 
or  simply  multicore,  is  a  combination  of  two  or  more 
independent processors into a single integrated circuit (IC) 
package.  It  allows  the  device  to  exhibit  some  sort  of 
parallelism  -  thread-level  parallelism  (TLP)  and/or 
instruction  level  parallelism  (ILP)  -  while  enjoying  fewer 
components, lower cost, and less interconnection overheads.

Multicore  has  its  pros  and  cons.  Although promising 
and  advantageous,  having  multiple  cores  in  a  single  chip 
presents  several  problems,  cache  coherencies  and  memory 
synchronization are among them.  However,  these concerns 
were  similar  to  those  addressed  by  multiprocessors  and 
parallel processors since the late 1980s. 

Multiprocessing  is  not  a  new  technology.  Multiple 
processors communicate by way of sharing data structures. A 
standard problem in a system running multiple processes is 
how to control accesses to the shared data to ensure correct 
behavior and data consistency. Such can be addressed with 
synchronization,  the  coordination  of  simultaneous  threads 
and  processes  accessing  the  same  memory  address  space. 
Synchronization mechanisms, although mostly rely on user-
level software algorithms, also require support by hardware 
primitives. 

II. CLASSIFICATION OF SYNCHRONIZATION

A  general  classification  of  synchronization  is  either 
lock-based or lock-free.  

Lock-based  algorithm  is  the  traditional  way  to 
synchronize  multiple  processes  or  threads  by  using  locks. 
Locks, barriers, and mutual exclusion came to be tagged as 
lock-based  since  they  need  to  “lock”  a  shared  variable  to 
exclusively access and modify the data. Another process that 
wishes  to  use  the  variable  stays  in  busy-wait  or  spinning 
mode,  repeatedly  checking  to  see  if  the  lock  has  become 
available,  and  competes  for  lock  ownership  with  other 
processes  once  the  variable  becomes  free.  The 
implementation  of  this  technique  is  through  hardware 
primitives such as mutexes or semaphores to ensure that no 
two processes are concurrently accessed, thus preventing the 

corruption of  the shared memory.  Some downsides  to  this 
method include deadlocks, starvation, and priority inversion. 
Deadlock  occurs  when  several  processes  may  acquire  the 
semaphore  causing  both  to  wait  forever  for  the  other 
semaphore  to  be  released.  Starvation  is  insufficiency  in 
resources to complete a process, and priority inversion occurs 
when  a  higher  priority  thread  waits  for  the  lower-priority 
thread.  Of  course,  the  process  in  busy-wait  is  rendered 
useless because it only wastes clock cycles in idle state.

Lock-free algorithms aim to solve this problem.  Lock-
free and wait-free algorithms are designed to allow multiple 
threads to read and write shared data concurrently without 
corrupting it, thus the term “lock-free.” Wait-free" refers to 
the fact that a thread can complete any operation in a finite 
number of steps,  regardless of the actions of  other threads 
[2].

Hardware synchronization mechanisms such as atomic 
instructions  should  be  supported  by  the  CPU architecture. 
Lock-based  Test-and-Set,  Fetch-and-Increment,  Test-and-
Test-and-Set  are  some  of  the  popular  ones.  Lock-free 
primitives  include  Compare-and-Swap  and  Load-
Linked/Store-Conditional  instructions.  Compare-and-Swap 
(CAS) CPU instructions  compare the contents of a memory 
location to  a  given value then modify the contents of  that 
location if they are the same. 

III. PAPERS

Several  papers  have  proposed  solutions  to 
synchronization for shared memory multiprocessor systems. 
Crumney  and  Scott  [1]  in  1991  collected  some  of  these 
existing  algorithms  and  compared  them  with  a  new 
technique. The analysis implemented two popular busy-wait 
synchronization constructs,  namely spin locks and barriers. 
Spin locks provide a means for achieving mutual exclusion 
ensuring  that  only  one  processor  can  access  a  particular 
shared data structure at a time. Barriers provide a means of 
ensuring that no processes advance beyond a particular point 
in a computation until all have arrived at that point. 

The  paper  provided  an  analytical  comparison  of  five 
spin  lock  implementations,  simple  test-and-set  lock,  ticket 
lock,  two  array-based  queuing  lock,  against  the  list-based 
queuing  lock and  evaluated  them based on scalability  and 
induced  network  load,  one  processor  latency,  space 
requirements,  fairness  sensitivity  to  preemption,  and 
implementability with given atomic operations. Five different 
barriers  were  also  compared:  four  previous  papers,  the 
centralized  barrier,  software  combining  tree  barrier, 
dissemination  barrier,  tournament  barrier,  and  the  author’s 



own  design  called  tree-based  barrier.  Evaluation  criteria 
include  length  of  critical  path,  total  number  of  network 
transactions, space requirements, and implementability with 
given  atomic  operations.  All  of  the  implementations  were 
tested using the BBN Butterfly, a distributed shared memory 
multiprocessor, and the Sequent Symmetry Model B, a cache 
coherent,  shared-bus  multiprocessor.  The  network  latency 
increase for busy-wait and barrier schemes in the Butterfly 
with 60 processors are shown in Table 1 and Table 2.

The  algorithms  does  not  require  special-purpose 
mechanisms.  Commonly-available  hardware  atomic 
primitives were enough to support synchronization. Among 
these general purpose primitives, shared memory machines 
would  benefit  most  with  fetch  and  increment  operations, 
including  compare-and-swap.  Based  on  architecture,  the 
paper recommended a compatible algorithm.   The results are 
found in Table 3.

Table 1 Increase in Network Latency on the Butterfly caused by 60 Processors 
Competing for a Busy-Wait Lock [1]

Barrier Local 
Polling

Network 
Polling

Tree 10% 124%
Dissemination 18% 117%

Table 2 Network Latency Increase using Local and Network Polling Strategies [1]
 

Lock or Barrier Algorithm Recommended for...

MCS Lock Hardware provides Fetch and 
Store

Ticket Lock w/ Backoff No fetch and store

Simple Lock w/ Exponential 
Backoff

Process will be preempted while 
spinning

Centralized Counter barrier Broadcast-based cache-coherent 
multiprocesses

Dissemination barrier or tree-
based  barrier

Multiprocessor without cache 
coherence

Table 3 Recommended Lock and Barrier for Different Architectures [1]

However,  a  breakthrough in synchronizing techniques 
was the introduction of lock-free and wait-free algorithms by 
Maurice Herlihy [2]. He published a series of papers focusing 
on lock-free objects. He defined lock-free as a process which 
does not require mutual exclusion. 

His  paper  [2]  on  wait-free  synchronization  in  1993 
presents a proof that atomic registers have few applications in 
wait-free implementations. The contribution of this paper is 
the  statement  that  it  is  impossible  to  construct  wait  free 
implementation  of  (1)  common  data  types  such  as  set, 
queues,  stacks,  priority  queues,  or  lists,  (2)  most  classical 
synchronization primitives, such as test and set, compare and 
swap, and fetch and add. It presents a model of computation 
for  simple  universal  objects  from  which  a  wait-free 
implementation can be constructed for any sequential object. 
It  suggests  the  use  of  compare  and  swap  primitives  for 
universal  construction  over  classical  synchronization 
primitives  (test  and  set,  fetch  and  add),  which  they 
commented are as weak as message-passing primitives.

Transactional  memory  [3]  shows  its  advantages  over 
locks  to  address  energy  consumption issues.  However  this 
advantage is dependent on the architecture, contention level 
and  the  conflict  policy  being  implemented  in  certain 
architectures.  Transactional  memory  was  proposed  by 
Herlihy in an earlier paper. There have been rich studies on 
both software and hardware implementations since then. A 
transaction is defined by the scope of a lock. Each transaction 
is executed speculatively by a single thread without acquiring 
a  lock.  The  execution  is  optimistic,  and  if  it  completes 
without  conflict,  it  will  commit  and  no  further  action  is 
required.  Otherwise,  if  conflicts  were  detected  during  the 
execution,  the  transaction  will  abort,  its  effects  will  be 
discarded  and  will  be  required  to  roll  back  and  re-issued. 
Hardware transactional memory proved to be superior over 
software transactional memory.

Reference [3] used the SPLASH-2 benchmark suite to 
compare the hardware transactional memory and a synthetic 
microbenchmark for high contention operations. The results 
in Fig. 1 shows a reduction in energy consumption at high 
contention,  which  is  attributed  to  the  reduced  number  of 
cache and memory accesses.

Figure 1 Energy Consumption of Microbenchmarks Using Locks vs. Transactions [3]

Busy Wait Lock Increase in Network 
Latency Measured 

From
Lock Node Idle Node

Test and set 1420% 96%
Test  and set  w/  Linear 
Backoff

882% 67%

Test  and  set  w/  Exp. 
Backoff

32% 4%

Ticket 992% 97%
Ticket w/ prop. backoff 53% 8%
Anderson 75% 67%
MCS 4% 2%



Table 4 Energy Consumption per Cache/Memory Access [3]

Energy  estimates  for  different  memory  hierarchy  are 
shown in Table 4. The shared memory energy was computed 
as the sum of the I/O processor of the Front Side bus, the I/O 
of  the  SDRAM pins,  and  the  actual  SDRAM access.  The 
paper  shows that  a  transaction is  advantageous over  locks 
both in performance and energy for rare conflicts. However, 
as conflicts rise, transactions may not be beneficial due to the 
cost of rolling back. They proposed to serialize transactions 
following a high-conflict region of execution.[3] 

The  advantages  of  transactional  memory over  mutual 
exclusion have been investigated for different architectures. 
Specifically interesting are its effects on large-scale shared-
memory multiprocessor units and the hardware support best 
suited for each system.

Another  paper  [4]  which  focused  on  hardware 
synchronization solutions studied different atomic primitives 
for  distributed  shared  memory  multiprocessors  (DSM).  It 
considered three general purpose hardware primitives, fetch-
and-increment,  compare-and-swap,  load-linked/store-
conditional  on  directory-based  cache-coherent  DSM 
multiprocessors. These primitives are largely used for lock-
free  software  algorithms  such  as  introduced  by  Herlihy. 
Having  seen  that  generic  primitives  provide  greater 
concurrency,  efficiency and fault-tolerance,  the  purpose  of 
the paper  was to find the best  atomic primitive to use for 
future  DSM  multiprocessors.   Three  fetch-and-increment, 
five CAS, and three LL/SC, were categorized according to 
coherence  policy  as  INValidate,  UPDate,  and  UNCached. 
The result achieved is highly in favor of compare-and-swap 
instructions, which the researchers recommended for cache 
controllers  with  write-invalidate  coherence  policy.  Fetch-
and-add was found to be efficient for lock-free counters, and 
is recommended for uncached memory.

Several  more  papers  that  followed  focused  on  both 
software and hardware synchronization techniques.  Topics 
range  from  distributed  data  structure  that  implements 
concurrent,  lock-free,  low-contention  read-modify-write 
registers to nonblocking queues using FIFO buffers that can 
work both on symmetric and unsymmetrical processors. 

IV. INDUSTRY AND ACADEMIC TRENDS

Emerging  architectures  such  as  Simultaneous 
Multithreading (SMT) and Chip Multiprocessing (CMP) are 
bringing  multiprocessing  to  the  desktop.  Multiple  cores 
communicate directly by way of shared hardware cache to 

increase concurrency. With SMT and CMP at play, shared-
memory  parallel  processing  has  once  again  become  an 
important topic of investigation both for the industry and the 
academe. The problem with synchronization one decade ago 
is  shifting  to  the  level  of  multicores.  There  is  in  fact  a 
growing  community  that  study  hardware  architectures 
employing  these  techniques.  Its  major  effects  on 
programming  languages,  compilers  and  operating  systems, 
present problems and thus opportunities for more intensive 
researches in the software side. 

Chip  manufacturers  have  started  shipping  multicore 
processors.  Industry efforts to synchronize data focuses on 
locks and semaphores. IBM Power 4 [6], the first of its kind, 
included  two  noncacheable  units  to  handle  cache  and 
synchronization operations. It used lock and unlock functions 
to  execute  synchronization  instructions,  such  as  sync and 
lwsynch,   provided  in  the  PowerPC  Instruction  Set 
Architecture.  In  software,  Win32 and  POSIX API  provide 
both  blocking  and  non-blocking  thread  synchronization 
primitives. Reference [7] however pointed out that although 
lock-free  approaches  are  promising,  this  area  is  still  in 
theoretical and experimental stages, and are left in the realm 
of university studies.

Academic efforts to address the synchronization issues 
include an abundance of talks on transactional memory and 
its applications on CMPs. One example is the keynote speech 
by Maurice Herlihy in the recent ACM PODC 06 held July 
22-26, 2006 [8]. 

Wells  [5]  hypothesized that  spin-lock is  an  attractive 
mutex mechanism for CMPs. Using the SPARC v9 ISA, they 
then  proved  this  as  sufficient  for  single-chip  CMPs  as 
compared to queue-based locks, being simpler to implement. 
An  improved  cache-to-cache  transfer  is  observed  by 
increasing  the  number  of  cores  per  chip  using  different 
benchmarks (see Fig. 2). To further improve performance of 
spin-locks, the paper also proposed an on-chip lock arbiter 
that will convert spin-locks to queue-based locks and assign 
priority based on the locality of requesting processor.

Figure 2 Cache to Cache Transfers Resulting from Locks [5]

Machine Width 4-wide fetch, issue, commit
L1 DCache 8KB 4-way; 32B line; 3 cycle 

latency
0.47 nJ

Transactional 
Cache

64-entry fully associative 0.12 nJ

L2 Cache 128KB  4-way;  32B  line;  10 
cycle latency

0.9 nJ

Memory 256MB;  200-cycle  latency; 
64-bit bus

33 nJ



V. INSIGHTS AND CONTRIBUTION

Although little is known on the advances of lock-free 
algorithms in chip multiprocessing, efforts on the academic 
side are being put up to fill in the gap. Transactional memory 
and  lock-free objects have been found beneficial for shared 
memory  multiprocessors  in  the  past.  It  would  perhaps 
provide a parallel impact with CMPs today, especially when 
it is backed up with the multithreading technology. 
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