A Presentation of the RISC and CISC

Instruction Set Architectures
Marie Elma Domingo

University of the Philippines
Diliman, Quezon City
Abstract-This paper presents two instruction set architectures, particularly the CISC and the RISC, which have been developed as computer architects aimed for a fast, cost-effective design. Included in this paper are the arguments made for each architecture, and of some performance comparisons on RISC and CISC processors. These data are collected from various papers published concerning the RISC versus CISC discussion.
I. INTRODUCTION
During the 1980’s, a new technology emerged in the computer industry – the Reduced Instruction Set Computer (RISC). This instruction set architecture surfaced as an alternative to the older, established technology already in the field – the Complex Instruction Set Computer (CISC).
RISC was presented as a solution to derive more instruction set power out of a computer. It is not just a means to reduce the instruction set, but it is a way of significantly enhancing the performance of a system while having minimal costs compared to that of a CISC implementation [1].
In 1980, the paper published by Patterson and Ditzel laid down the arguments in favor of RISC over CISC which started the RISC versus CISC debate that lasted for years.
Before we delve into the arguments for and against these architectures, we must first understand the differences between them. The definitions of RISC and of CISC are given in the next few subsections.

What’s the RISC?
RISC is a microprocessor design approach using simple instructions. Though it may seem less effective for a computational task to be executed with many simple instructions rather than a few complex instructions, the simple instructions take fairly the same amount of time to be performed, making them ideal for pipelining [2].
The other elements that define a RISC processor, according to [3], are the following:

· Single-cycle operation aids in fast execution of simple functions
· Load/Store architecture implemented due to the desired single-cycle operation
· Hardwired control provides for the fastest possible single-cycle operation
· Relatively few instructions and addressing modes makes it easy for the control unit to interpret instructions
· Fixed instruction format makes decoding of instructions fast and easy
· More compile-time effort offers opportunity to explicitly move static run-time complexity into compiler
And what exactly is CISC?
The CISC design uses complex instructions intended for direct implementation of high-level language operations [2]. These complex instructions that take time to be executed are made up of smaller, simpler instructions.
CISC microprocessors can be described as the opposite of RISC having these characteristics [3]:
· Multi-cycle operation due to variable execution time of instructions
· Not a load/store machine
· Relies on micro-coded control engine
· More instructions and addressing modes like that of a high-level programming language

· Variable-length instruction format dependent on the number of operands and addressing modes used
· Difficult targets for optimizing compilers because of complex instructions

II. ARGUMENTS AND COUNTER-ARGUMENTS
Having seen the difference between the two architectures, this section now presents the arguments made for each in different aspects of computer design.

Table I shows the summarized list of arguments for RISC and against CISC from [4]. Notice that the arguments for RISC revolve around the central idea of it being a simple design. From this simple design spawns advantages that the CISC architecture would not be able to obtain due to its complexity.
The arguments for CISC, however, I find they lack documentation. What I found instead are published papers with counter-arguments for RISC. The summary for the counter-arguments is given in the next subsection.

TABLE I

ARGUMENTS FOR RISC
	Factor
	RISC
	CISC

	Implementation Feasibility
	Simple architecture makes RISC being realizable at earlier date
	Complex architecture make it difficult to implement on a single chip with the design rules at that time

	Design Time
	Design that can be easier to design and debug can use much superior technology than design that takes a long time to implement
	Lengthened design time may lead to problems such as having a machine with an old technology, or trying to predict future technology and have a go at attempting to build that technology

	Speed
	Gains in speed from better use of chip area and from simple design – with less instructions and addressing modes, these would lead to a less complicated control structure
	More instructions and addressing modes result to complicated control structure

	Use of Chip Area
	Area left on chip due to simple design may be used to make RISC improve performance even more
	Complex design leaves no room on chip for enhancements

The Counter-arguments
These are counter-arguments made against the RISC architecture.
False Dichotomy. Complexity of a machine cannot be measured by instruction count alone, and cannot be the only decisive factor for categorizing a machine as RISC or CISC [3, 5].
Lengthy Design Time. Designing products for a high-volume manufacturing company has time-consuming processes that do not exist in a small company [5]. There are differences in the design environments for academic research and from companies that produce commercial products [3].

Language Multiplicity. An instruction set that supports only a particular language can make the implementation of a different language difficult [5]. Designing a machine for a particular language is different from designing one that accepts a wide range of languages [3].
Instruction Execution Time. Frequency of execution of instruction must not be the focus of attention, but also to the length of time an instruction is executed [3, 5].
Microbenchmarks. Small programs (e.g. Towers of Hanoi, Fibonacci) that have been used to measure performance on RISC machines have a narrow scope on functions, although they execute millions of instructions. These benchmarks do not represent actual applications used in the industry [3].
Specialized Hardware. Higher-level hardware-software interface has the advantage of possible use of specialized hardware for better performance [5].

Chip Usage. Chip area left by RISC’s simple design can indeed be used by adding enhancements for better performance. But these enhancements are not inherent in RISC architectures [3].
Ignored Operating System. The system is not only made of software, hardware, and application code. The operating system overhead and needs have been given too little attention in RISC research [3].
More Instructions. Breaking up complex instructions of CISC results to more instructions per program [6].

According to these rebuttals, some arguments for RISC are misleading – for example the design time and chip usage – and therefore cannot be used as basis for comparison of the two architectures. Also, other areas of interest must be properly investigated to make an accurate comparison between the two, like that of the operating system of a machine. Reference [5] stated that with just a paper design and lack of metrics to back the arguments, the claim that the RISC architecture can be superior over CISC will be difficult to prove.
III. PERFORMANCE COMPARISON
Bhandarkar and Clark published a paper [6] in 1991 that did performance comparisons on implementations from the RISC and CISC architectures. They chose the MIPS M/2000 from the RISC architecture and Digital VAX 8700 from CISC since these machines possess organizational similarity. Nine out of ten SPEC89 benchmarks were run on both machines, and the results were noted down and analyzed.
The results show that the MIPS M/2000 had more instructions than that of VAX 8700, but achieved much less average CPI on all benchmarks. Also, analysis of results reveals that MIPS M/2000 has a net advantage, and this advantage are attributed to architectural factors like filled delay slots and the number of registers.
Based on the results, they concluded that the MIPS has an advantage in processor performance over VAX with a comparable architecture.

In 1994, another paper [7] was published by Bhandarkar comparing various design aspects of two machines from each architecture – the Alpha 21164 from RISC, and the Intel Pentium® Pro processor. Results show that the Alpha 21164 had better performance, performing over two times faster in floating point benchmarks, and a little better in performance in integer and transaction processing workloads than the Pentium® Pro.
The performed experiments for comparison did not only demonstrate that RISC machines can be at par with CISC, but may even outdo them in performance.

III. INDUSTRY REACTION
While the RISC versus CISC debate continued over the years, many companies have adopted the RISC design and produced a number of successful processors based on RISC designs. These include the ARM family of RISC processors, the IBM PowerPC family of RISC processors, Sun’s SPARC and UltraSparc, MIPS, and HP’s PA-RISC.
The CISC-based design was also continued to be supported and processors under the said architecture are the Motorola 68000 family, Intel processors, and the VAX family.

Processors with characteristics from both architectures have also materialized, as “Crisp” processors like Intel 80x86 processors and the Motorola 80486 and 68040 were designed to have RISC features [1]. Also, advancements in technology such as simultaneous multi-threading and value prediction are used by machines under both architectures, and because the architectures have adopted the strategies of the other that the architecture classification becomes blurred [8].
IV. CONCLUSION
The RISC design had advantages that result to a machine’s excellent performance that it has been adopted for commercial products, as we can see from the industry’s response of designing RISC-based processors. The long RISC versus CISC debate was most certainly a good thing as it allowed the industry to explore and come up with solutions that have significantly raised the machine’s performance we use today. Due to this exploration, both architectures have continuously developed and processors today have a little bit of something from each architecture.

REFERENCES
[1] A. Molina, “Current trends, issues and strategies in the development of the microprocessor industry,” Edinburgh PICT working paper no. 42, 1992.
[2] C. Hamacher, Z. Vranesic, and S. Zaky, Computer Organization fifth edition. Boston: McGraw-Hill Publishing, 2002.
[3] R.P. Colwell, C.Y. Hitchcock III, E.D. Jensen, H.M. Brinkley Sprung, and C.P. Kollar, “Instruction sets and beyond: computers, complexity, and controversy,” IEEE Computer, 1986.
[4] D. Patterson and D. Ditzel, “The case for the reduced instruction set computer,” ACM SIGARCH Computer Architecture News, 1980.
[5] C. Douglas and W. Strecker, “Comments on ‘The case for the reduced instruction set computer’ by Patterson and Ditzel,” 1980.

[6] D. Bhandarkar and D. Clark, “Performance from architecture: comparing a RISC and a CISC with similar hardware organization,” Proceeding of APLOS-IV, 1991.

[7] D. Bhandarkar, “RISC versus CISC: a tale of two chips,” Computer Architecture News, 1994.
[8] C. Chen, G. Novick, and K. Shimano, RISC Architecure, http://cse.stanford.edu
