CS252
HOMEWORK 2
D. A. Patterson

Due Mon. 8/7/06

Problem 1:

Prefetching is a technique that allows the “consumer” of data to request the data to its cache before it needs them. With multiprocessors, we can think of the “dual” of this technique where the “producer” of the data “evicts” the data from its cache after it is done with them. An extension of such “postflushes” could be to send the data to the next processor that needs the data, in cases where that can be determined.

a. When is prefetching likely to be applicable? When is producer-initiated communication likely to be beneficial? Would producerinitiated communication be applicable in the context of the queuing locks and tree barriers?

b. Assume a shared-memory multiprocessor system that takes 100 cycles for a memory access and 300 cycles for a cache-to-cache transfer. A program running on this machine spends 60% of its time stalled on memory accesses and 20% of its time stalled on synchronization. Of these memory stalls, 20% are due to producer-consumer data access patterns where the writer of data can identify the processor that will read the value next. In these cases, producer-initiated communication can directly transfer data to the cache of the next processor needing the data. This will reduce the latency of these memory accesses from 300 cycles for a cache-to-cache transfer to 1 cycle for a cache hit. Another 30% of the memory stalls are due to migratory data patterns where data move from one processor to another, but the migration path is unclear to the source processor. In this case, a producer-initiated communication primitive, such as “postflush,” can reduce the latency of the memory access from 300 cycles to 100 cycles. Further assume that all the synchronization is due to tree barriers and that the tree barrier overhead can be reduced by 40% with producer-initiated communication. Assuming no other overheads, what is the reduction in execution time with producer initiated communication?

c. What memory system and program code changes are required for implementing producer-initiated communication?

Problem 2:
The following results are seen from a simulation study of five floating-point benchmarks and two integer benchmarks from the SPEC92 suite. The branch misprediction rate nearly doubles from 5% to 9.1% going from 1 thread to 8 threads in an SMT processor. However, the wrong-path instructions fetched (on a misprediction) drops from 24% on a single-threaded processor to 7% on an 8-thread processor.

a. What causes the increase in branch misprediction rate?

b. Why is there a decrease in the number of wrong-path instructions fetched even though there is an increase in branch misprediction rates? (Hint: This is related to the scheduling of threads.)

c. Based on these numbers, what conclusions can you draw about the conflicts caused due to contention and interference on various resources in a multithreaded processor?
Problem 3:

In the following problem, use a simple pipelined RISC architecture with a branch delay cycle. The architecture has pipelined functional units with the flowing execution cycles:

1. Floating point op: 3 cycles

2. Integer op: 1 cycles

The following table shows the minimum number of intervening cycles between the producer and consumer instructions to avoid stalls. Assume 0 intervening cycle for combinations not listed.

	Instruction producing result
	Instruction using result
	Latency in clock cycles

	FP ALU op
	Another FP ALU op
	2

	FP ALU op
	Store and move double
	2

	Load double
	FP ALU op
	1

	Load double
	Store double
	0

The following code computes a 3-tap filter. R1 contains address of the next input to the filter, and the output overwrites the input for the iteration. R2 contains the loop counter. The tab values are contained in F10, F11, F12.

LOOP:

L.D

F0, 0(R1)
#load the filter input for the iteration

MULT.D
F2, F1, F12
#multiply elements

ADD.D
F0, F2, F0
#add elements

MULT.D
F2, F1, F11

MOV.D
F1, F0

#move value in F0 to F1

MULT.D
F0, F0, F10

ADD.D
F0, F0, F2

S.D

F0, 0(R1)
#store the result

ADDI

R1, R1, 8
#increment pointer, 8 bytes per DW

BNEZ

R2, LOOP
#continue till all inputs are processed

SUBI

R2, R2, 1
#decrement element count

a. How many cycles does the current code take for each iteration?

b. Rearrange the code without unrolling to achieve 2 less cycles per iteration. Show execution cycle next to each code line.

c. If there is an extra floating point register, F8, available, show a place in the above code where register renaming can be use to allow more rearrangement to achieve further improvement with out unrolling. Write out the modified code with execution cycle next to each code line.

d. Can the original code be optimized with loop unrolling and software pipeline to avoid stalls in the loop due to data dependencies? Why?

e. Unroll the original loop twice (so contains 3 iterations) and schedule it to avoid stalls. Assume the second iteration has F0 renamed to F3, F1 renamed to F4, and F2 renamed to F5. Assume the third iteration has F0 renamed to F6, F1 renamed to F7, and F2 renamed to F8

f. What is the effective cycle per iteration for the unrolled loop, where the iteration is referring to the an iteration for the original code?

g. Software pipeline the given loop with 5 iterations. Ignore startup and cleanup code. Use as many floating point register as needed for renaming. Indicate the iteration that each code line belongs to.

h. What is the effective cycle per iteration for the software pipelined loop?

