
Simultaneous Multithreading (SMT) Processors
Jennifer M. Jayme

Department of Electrical and Electronics Engineering
University of the Philippines

Diliman, Quezon City
Philippines

Abstract

Different Simultaneous Multithreading (SMT)
architectures have been proposed and
implemented in the industry. Though, as powerful
as it sounds over a superscalar processor, design
issues are not rare. Addressing a certain problem
can be done in hardware or in software;
depending on what SMT architecture will you
apply it to. Two papers are presented here. The
first one, implemented in hardware a solution for
wasted resources, heterogeneously clustered SMT
architecture. The Heterogeneously Distributed
SMT (hdSMT) architecture maximizes the
hardware budget by taking into account the
heterogeneity of applications. The second paper
proposed an Implicitly-Multithreaded (IMT)
processor utilizing SMT’s support for
multithreading by executing speculative threads. It
relied mostly on the compiler to select suitable
thread spawning points and orchestrate inter-
thread register communication.

I. INTRODUCTION

One problem for multithreaded
microprocessors is that they have a very poor
instruction level parallelism. Some issue slots in an
execution sequence for a given cycle can be used,
but not all. However, they have the advantage of
better tolerance for long-latency operations,
thereby eliminating a completely unused cycle in
an execution sequence. One solution is to
implement simultaneous multithreading which has
features of a multithreaded processor with the
ability to issue multiple instructions per cycle. [1]

A lot of SMT architectures have been proposed
and used in the industry. An SMT architecture in
which the hardware is heterogeneously clustered in

order to reduce the amount of wasted resources is
one implementation. It showed better performance
over monolithic SMT and homogeneously
clustered SMT. Another modified SMT
architecture, the Implicitly Multithreaded
architecture used the power of a compiler to
speculate threads to be executed.

POWER5TM is an example of an SMT
processor [3] which is currently in production.

II. RELATED WORK

1. The hdSMT Architecture [2]

The foundations of the hdSMT architecture
are comprised of a threefold combination of well
known principles and techniques: SMT, clustering,
and heterogeneity-awareness. An hdSMT
processor proposes a multithreaded alternative that
lays on the spectrum that extends in between SMT
and CMP processors. There is multiple possible
hardware configurations in between SMT and
CMP processors, as we vary the amount of
resources shared among the execution cores.
However, the heterogeneity in applications’
behavior makes vary the hardware requirements
among different applications. To better profit from
the available hardware it should be
heterogeneously clustered and the applications
appropriately matched with the clusters according
to their needs. The hdSMT architecture maximizes
the available hardware budget by taking into
account the heterogeneity in this way. The hdSMT
architecture overview is depicted in Fig. 1. As in a
conventional SMT processor, all threads share the
caches, register file, and fetch engine. However,
the rest of the pipeline stages and resources are
arranged in heterogeneous clusters (or pipelines).
So, each pipeline comprises all the pipeline stages

Fig.1. The hdSMT architecture

of the conventional processor but the fetch stage.
Each pipeline also has got its own private
instruction queues, renaming map tables and
functional units. The size and number of these
resources may vary from pipeline to pipeline.
Additionally, each thread’s instructions are stored
in a private reorder buffer (ROB), one per thread.
In this clustered multithreaded architecture, entire
threads are assigned to pipelines according to
heterogeneity. This implies that there are no
dependencies between instructions in different
clusters, since all instructions from a single thread
are mapped to the same pipeline. The heterogeneity
aware fetch engine strives to match both the needs
of each running application and the interaction
among each application with the heterogeneously
distributed hardware. This software-hardware
mapping is performed each time the job scheduler
of the operating system selects a new bunch of
active threads. The whole subsequent execution of
the workload is done according to this mapping.
The number of hardware contexts and width of
each pipeline may vary from pipeline to pipeline.
So, hdSMT microarchitecture may be comprised of
both narrow single-threaded and wide-
multithreaded pipelines, as well intermediate
pipelines. Depending on the resource needs of each
application and the interaction between application
behaviors, more than one application may be
mapped to a single pipeline. This distribution of the
hardware contexts along the chip can be profited to
turn off idle pipelines whenever the number of
running applications does not reach the number of
hardware contexts.

Notice that multipipeline-awareness in
hdSMT uncovers new fetch policies not available

in conventional SMT processors. The shared fetch
engine is limited by the number and width of the
instruction cache ports. However, the number of
instructions that each pipeline accept per cycle may
vary from pipeline to pipeline. In order to decouple
the fetch engine from the characteristics of each
specific pipeline it feeds, some small buffers are
added before each pipeline. Thus, the fetch engine
inserts in-order the fetched instructions at its own
rate while each pipeline extracts in-order
instructions according to its width. The fetch policy
takes into account these buffers in order to
appropriately balance the instructions fetched
among the pipelines. Depending on the pipeline set
characteristics, this may result in a wider global
decode bandwidth since all pipelines are fed from
their private buffer each cycle.

2. Implicitly-Multithreaded Processors [4]

An Implicitly-MultiThreaded (IMT)
processor utilizes SMT’s support for
multithreading by executing speculative threads.
Fig. 2 depicts the anatomy of an IMT processor
derived from SMT. IMT uses the rename tables for
register renaming, the issue queue for out-of-order
scheduling, the per-context load/store queue (LSQ)
and active list for memory dependences and
instruction reordering prior to commit. As in SMT,
IMT shares the functional units, physical registers,
issue queue, and memory hierarchy among all
contexts. IMT exploits implicit parallelism, as
opposed to programmer-specified, explicit
parallelism exploited by conventional SMT and
multiprocessors. Like Multiscalar, IMT predicts the
threads in succession and maps them to execution
resources, with the earliest thread as the
nonspeculative (head) thread, followed by
subsequent speculative threads. IMT honors the
inter-thread control flow and register dependences
specified by the compiler. IMT uses the LSQ to
enforce inter-thread memory dependences. Upon
completion, IMT commits the threads in program
order. There are two IMT variations: (1) a Naive
IMT (NIMT) that performs comparably to an
aggressive superscalar, and (2) an Optimized IMT
(O-IMT) that uses novel microarchitectural
techniques to enhance performance.

Fig. 2. The Anatomy of an IMT processor

Fig. 3. Performance per Area Comparison

Fig. 4. Performance Comparison of N-IMT and O-IMT Normalized to the Baseline Superscalar

Fig. 5. Performance Comparison of TME, DMT, and IMT Normalized to Baseline Superscalar

III. COMPARISONS

The hdSMT proposed design implementation
and optimization of SMT in hardware while the
IMT done it in software. hdSMT compared
performance using benchmarks with high
instruction-level parallelism (ILP), with bad
memory behavior (MEM), or a mix of both
(MIX). Fig. 3 shows the raw performance results
(measured in IPC) for all the microarchitectures
evaluated in their study. In each case, the
harmonic mean of all workloads of a same type
and size is shown. These results point out that,
although some hdSMT results are quite similar to
SMT baseline ones, the hdSMT results are
exceeded by the SMT baseline ones in some
cases. As can also be observed from the figure,
we can infer that the hdSMT architecture achieves
higher performance per area ratios than the
monolithic SMT architecture, that is, better
relative results than SMT using fewer resources.

Meanwhile, IMT compared a Naïve-IMT with
an Optimized-IMT as well as its previous studies
of Threaded Multipath Execution (TME) and
Dynamically Multi-Threaded (DMT) processors.
Figure 4 indicates that N-IMT’s performance is
actually inferior to superscalar for integer
benchmarks. N-IMT reduces performance in
integer benchmarks by as much as 24% and on
average by 3% as compared to superscalar.
Moreover, while the results for floating-point
benchmarks vary, on average NIMT only
improves performance slightly over superscalar
for these benchmarks. The figure also indicates
that microarchitectural optimizations substantially
benefit compiler-specified threading, enabling O-
IMT to improve performance over superscalar by
as much as 69% and 65% and on average 20%
and 29% for integer and floating point
benchmarks respectively. Figure 5 compares
speedups for the optimized TME and DMT
machines, against O-IMT normalized to the
baseline superscalar. Unlike O-IMT, TME and
DMT reduce performance on average with respect
to a comparable superscalar. TME primarily
exploits thread-level parallelism across
unpredictable branches. Because unpredictable
branches are not common, TME’s opportunity for

improving performance by exploiting parallelism
across multiple paths is limited. TME’s eagerness
to invoke threads on unpredictable branches also
relies on the extent to which a confidence
predictor can identify unpredictable branches. A
confidence predictor with low accuracy would
often spawn threads on both paths, often taking
away fetch bandwidth from the correct (and
potentially predictable) path. An accurate
confidence predictor would result in a TME
machine that performs close to, or improves
performance slightly over, the baseline
superscalar machine.

REFERENCES

[1] S. Eggers, et. al. Simultaneous Multithreading: A
Platform for Next-Generation Processors. IEEE Micro.
September-October, 1997.
[2] C. Acosta, et. al. A Complexity-Effective Simultaneous
Multithreading Architecture. IEEE paper.
[3] J. Clabes, et. al. Design and Implementation of the
POWER5TM Microprocessor. 2004 IEEE International
Solid-State Circuits Conference. February 16, 2004.
[4] I. Park, B. Falsafi, T. Vijaykumar. Implicitly-
Multithreaded Processors. IEEE paper.

