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Abstract

Different  Simultaneous  Multithreading  (SMT) 
architectures  have  been  proposed  and 
implemented in the industry. Though, as powerful  
as it sounds over a superscalar processor, design 
issues are not rare. Addressing a certain problem 
can  be  done  in  hardware  or  in  software; 
depending  on  what  SMT  architecture  will  you  
apply it  to.  Two papers are presented here.  The 
first one, implemented in hardware a solution for 
wasted resources, heterogeneously clustered SMT 
architecture.  The  Heterogeneously  Distributed 
SMT  (hdSMT)  architecture  maximizes  the  
hardware  budget  by  taking  into  account  the 
heterogeneity  of  applications.  The  second  paper  
proposed  an  Implicitly-Multithreaded  (IMT) 
processor  utilizing  SMT’s  support  for  
multithreading by executing speculative threads. It  
relied  mostly  on  the  compiler  to  select  suitable  
thread  spawning  points  and  orchestrate  inter-
thread register communication.

I. INTRODUCTION

One  problem  for  multithreaded 
microprocessors  is  that  they  have  a  very  poor 
instruction level parallelism. Some issue slots in an 
execution sequence for a given cycle can be used, 
but not all. However, they have the advantage of 
better  tolerance  for  long-latency  operations, 
thereby eliminating a completely unused cycle in 
an  execution  sequence.  One  solution  is  to 
implement simultaneous multithreading which has 
features  of  a  multithreaded  processor  with  the 
ability to issue multiple instructions per cycle. [1]

A lot of SMT architectures have been proposed 
and used in the industry. An SMT architecture in 
which the hardware is heterogeneously clustered in 

order to reduce the amount of wasted resources is 
one implementation. It showed better performance 
over  monolithic  SMT  and  homogeneously 
clustered  SMT.  Another  modified  SMT 
architecture,  the  Implicitly  Multithreaded 
architecture  used  the  power  of  a  compiler  to 
speculate threads to be executed. 

POWER5TM is  an  example  of  an  SMT 
processor [3] which is currently in production.

II. RELATED WORK

1. The hdSMT Architecture [2]

The foundations of the hdSMT architecture 
are comprised of a threefold combination of well 
known principles and techniques: SMT,  clustering, 
and  heterogeneity-awareness.  An  hdSMT 
processor proposes a multithreaded alternative that 
lays on the spectrum that extends in between SMT 
and  CMP  processors.  There  is  multiple  possible 
hardware  configurations  in  between  SMT  and 
CMP  processors,  as  we  vary  the  amount  of 
resources  shared  among  the  execution  cores. 
However,  the  heterogeneity  in  applications’ 
behavior  makes  vary  the  hardware  requirements 
among different applications. To better profit from 
the  available  hardware  it  should  be 
heterogeneously  clustered  and  the  applications 
appropriately matched with the clusters according 
to their needs. The hdSMT architecture maximizes 
the  available  hardware  budget  by  taking  into 
account the heterogeneity in this way. The hdSMT 
architecture overview is depicted in Fig. 1. As in a 
conventional SMT processor, all threads share the 
caches,  register  file,  and  fetch  engine.  However, 
the  rest  of  the  pipeline  stages  and  resources  are 
arranged in heterogeneous clusters  (or pipelines). 
So, each pipeline comprises all the pipeline stages 



Fig.1. The hdSMT architecture

of the conventional processor but the fetch stage. 
Each  pipeline  also  has  got  its  own  private 
instruction  queues,  renaming  map  tables  and 
functional  units.  The  size  and  number  of  these 
resources  may  vary  from  pipeline  to  pipeline. 
Additionally, each thread’s instructions are stored 
in a private reorder buffer (ROB), one per thread. 
In this clustered multithreaded architecture, entire 
threads  are  assigned  to  pipelines  according  to 
heterogeneity.  This  implies  that  there  are  no 
dependencies  between  instructions  in  different 
clusters, since all instructions from a single thread 
are mapped to the same pipeline. The heterogeneity 
aware fetch engine strives to match both the needs 
of  each  running  application  and  the  interaction 
among each application with the heterogeneously 
distributed  hardware.  This  software-hardware 
mapping is performed each time the job scheduler 
of  the  operating  system  selects  a  new bunch  of 
active threads. The whole subsequent execution of 
the workload is  done according to  this  mapping. 
The  number  of  hardware  contexts  and  width  of 
each pipeline may vary from pipeline to pipeline. 
So, hdSMT microarchitecture may be comprised of 
both  narrow  single-threaded  and  wide-
multithreaded  pipelines,  as  well  intermediate 
pipelines. Depending on the resource needs of each 
application and the interaction between application 
behaviors,  more  than  one  application  may  be 
mapped to a single pipeline. This distribution of the 
hardware contexts along the chip can be profited to 
turn  off  idle  pipelines  whenever  the  number  of 
running applications does not reach the number of 
hardware contexts. 

Notice  that  multipipeline-awareness  in 
hdSMT uncovers new fetch policies not available 

in conventional SMT processors. The shared fetch 
engine is limited by the number and width of the 
instruction  cache  ports.  However,  the  number  of 
instructions that each pipeline accept per cycle may 
vary from pipeline to pipeline. In order to decouple 
the  fetch  engine  from the  characteristics  of  each 
specific  pipeline it  feeds,  some small  buffers  are 
added before each pipeline. Thus, the fetch engine 
inserts in-order the fetched instructions at its own 
rate  while  each  pipeline  extracts  in-order 
instructions according to its width. The fetch policy 
takes  into  account  these  buffers  in  order  to 
appropriately  balance  the  instructions  fetched 
among the pipelines. Depending on the pipeline set 
characteristics,  this  may  result  in  a  wider  global 
decode bandwidth since all pipelines are fed from 
their private buffer each cycle.

2. Implicitly-Multithreaded Processors [4]

An  Implicitly-MultiThreaded  (IMT) 
processor  utilizes  SMT’s  support  for 
multithreading  by  executing  speculative  threads. 
Fig.  2  depicts  the anatomy of  an  IMT processor 
derived from SMT. IMT uses the rename tables for 
register renaming, the issue queue for out-of-order 
scheduling, the per-context load/store queue (LSQ) 
and  active  list  for  memory  dependences  and 
instruction reordering prior to commit. As in SMT, 
IMT shares the functional units, physical registers, 
issue  queue,  and  memory  hierarchy  among  all 
contexts.  IMT  exploits  implicit  parallelism,  as 
opposed  to  programmer-specified,  explicit  
parallelism  exploited  by  conventional  SMT  and 
multiprocessors. Like Multiscalar, IMT predicts the 
threads in succession and maps them to execution 
resources,  with  the  earliest  thread  as  the 
nonspeculative  (head)  thread,  followed  by 
subsequent  speculative  threads.  IMT  honors  the 
inter-thread control flow and register dependences 
specified by the compiler.  IMT uses  the  LSQ to 
enforce  inter-thread  memory  dependences.  Upon 
completion, IMT commits the threads in program 
order. There are two IMT variations: (1) a  Naive 
IMT  (NIMT)  that  performs  comparably  to  an 
aggressive superscalar, and (2) an  Optimized IMT 
(O-IMT)  that  uses  novel  microarchitectural 
techniques to enhance performance.



Fig. 2. The Anatomy of an IMT processor

Fig. 3. Performance per Area Comparison

Fig. 4. Performance Comparison of N-IMT and O-IMT Normalized to the Baseline Superscalar

Fig. 5. Performance Comparison of TME, DMT, and IMT Normalized to Baseline Superscalar



III. COMPARISONS

The hdSMT proposed design implementation 
and optimization of SMT in hardware while the 
IMT  done  it  in  software.  hdSMT  compared 
performance  using  benchmarks  with  high 
instruction-level  parallelism  (ILP),  with  bad 
memory  behavior  (MEM),  or  a  mix  of  both 
(MIX). Fig. 3 shows the raw performance results 
(measured in IPC) for all  the microarchitectures 
evaluated  in  their  study.  In  each  case,  the 
harmonic mean of all workloads of a same type 
and size  is  shown.  These results  point  out  that, 
although some hdSMT results are quite similar to 
SMT  baseline  ones,  the  hdSMT  results  are 
exceeded  by  the  SMT  baseline  ones  in  some 
cases.  As can also be observed from the figure, 
we can infer that the hdSMT architecture achieves 
higher  performance  per  area  ratios  than  the 
monolithic  SMT  architecture,  that  is,  better 
relative results than SMT using fewer resources.

Meanwhile, IMT compared a Naïve-IMT with 
an Optimized-IMT as well as its previous studies 
of  Threaded  Multipath  Execution  (TME)  and 
Dynamically Multi-Threaded (DMT) processors.
Figure  4 indicates  that  N-IMT’s  performance  is 
actually  inferior  to  superscalar  for  integer 
benchmarks.  N-IMT  reduces  performance  in 
integer benchmarks by as much as 24% and on 
average  by  3%  as  compared  to  superscalar. 
Moreover,  while  the  results  for  floating-point 
benchmarks  vary,  on  average  NIMT  only 
improves  performance  slightly  over  superscalar 
for  these  benchmarks.  The  figure  also  indicates 
that microarchitectural optimizations substantially 
benefit compiler-specified threading, enabling O-
IMT to improve performance over superscalar by 
as much as 69% and 65% and on average 20% 
and  29%  for  integer  and  floating  point 
benchmarks  respectively.  Figure  5  compares 
speedups  for  the  optimized  TME  and  DMT 
machines,  against  O-IMT  normalized  to  the 
baseline  superscalar.  Unlike  O-IMT,  TME  and 
DMT reduce performance on average with respect 
to  a  comparable  superscalar.  TME  primarily 
exploits  thread-level  parallelism  across 
unpredictable  branches.  Because  unpredictable 
branches are not common, TME’s opportunity for 

improving performance by exploiting parallelism 
across multiple paths is limited. TME’s eagerness 
to invoke threads on unpredictable branches also 
relies  on  the  extent  to  which  a  confidence 
predictor can identify unpredictable branches.  A 
confidence  predictor  with  low  accuracy  would 
often spawn threads on both paths,  often taking 
away  fetch  bandwidth  from  the  correct  (and 
potentially  predictable)  path.  An  accurate 
confidence  predictor  would  result  in  a  TME 
machine  that  performs  close  to,  or  improves 
performance  slightly  over,  the  baseline 
superscalar machine. 

REFERENCES

[1]  S.  Eggers,  et.  al.  Simultaneous  Multithreading:  A 
Platform  for  Next-Generation  Processors.  IEEE  Micro. 
September-October, 1997.
[2] C. Acosta, et. al.  A Complexity-Effective Simultaneous 
Multithreading Architecture. IEEE paper.
[3] J. Clabes, et. al. Design and Implementation of the 
POWER5TM Microprocessor. 2004 IEEE International 
Solid-State Circuits Conference. February 16, 2004.
[4]  I.  Park,  B.  Falsafi,  T.  Vijaykumar.  Implicitly-
Multithreaded Processors. IEEE paper.


